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ABSTRACT

In this paper, we present a novel technique for the
design of FIR and IIR digital filters. The design approach
begins with the specification of a discrete set of arbi-
trary magnitude and phase characteristics which
describe a desired filter response. These frequency
domain characteristics are used to create an ideal
'pseudo-filter' whose impulse response is unknown and
possibly non-causal, but whose input/output charac-
teristics can be determined for a finite sum of sinusoids.
Time-domain techniques common to adaptive system
identification are then used to identify a realizable FIR
or hR digital filter which best matches the pseudo-filter.
The advantages of this method include the ability to
specify response at arbitrarily-spaced frequencies, to
use arbitrary cost weighting, and to apply (possibly non-
linear) constraints to the range of the filter coefficients.

I. INTRODUCTION
Many techniques are available for the design of FIR

and hR digital filters. In this paper we present a new
method that we call the Psuedo Filter Design Technique
(PFDT). We feel this technique is substantially different
from any technique currently in the literature, for it
allows a degree of flexibility in the design procedure
that is unmatched by previous works.

It can be shown that the PFDT encompasses the Fre-
quency Sampling FIR design of Rabiner et al. [i}. There
is also a similarity between the statistical hR design
method of SharI and Luby [2] and the PFDT since both
solutions involve second order statistics. The statistical
method involves analytical expressions for the desired
frequency response and its weighting function. For arbi-
trary filter designs, analytical expressions may be hard
to specify. The PFDT is more flexible since it involves
discrete frequency and weighting specifications.
Another commonly used hR filter design method is that
of Burrus and Parks [3]. There, an hR filter is matched
to a high order FIR filter that has the desired frequency
response. This restricts somewhat the specification pro-
cess, and in essence requires the design of two filters for
each final product.

II. TECHNIQUE DESCRIPTION
The PFDT is best explained through concepts corn-

moo to adaptive system identification. Figure 1 shows
the basic system identification structure. The idea is to
select a model and determine the model parameters
which describe or approximate an unknown system
(commonly referred to as the plant). In most situations,
the model cannot exactly match the plant, so an
optimality criterion is established. The criterion

usually involves the minimization of the squared error
between the plant and model outputs (output error), or
the squared error between the plant and model equa-
tions (equation error).

The connection between the above example and the
PFDT is seen in Figure 1. The unknown plant is replaced
by an ideal filter which represents the desired charac-
teristics. The model is replaced by the digital filter to
be designed, referred to in this paper as the modeling
filter. It represents an FIR or hIP. digital filter whose
order is specified by the user.

Our technique involves generating the ideal psuedo
filter based on a set of magnitude and phase
specifications at discrete frequencies which may or may
not be uniforrnily spaced. A filter possessing these
characteristics may have an impulse response which is
non-causal and therefore non-realizable. For this rea-
son we call the ideal filter a 'pseudo-filter". Even
though the pseudo-filter is non-realizable, it will have
input/output characteristics which are known for an
input consisting of a sum of sinusoids whose frequencies
are those of the specification set. The goal is to have
the modeling filter (the designed filter) match the
pseudo-filter at those frequencies. Typically the
number of frequency specifications is large compared to
the degrees of freedom in the modeling filter (number of
poles and zeroes), and it will be impossible to make an
exact match between the pseudo-filter and the modeling
filter. In this case, the modeling filter is chosen so as to
minimize the squared error between the outputs of the
two filters.

In Figure 2 it is seen that the input excitation con-
sists of a weighted sum of sinusoids at the specification
frequencies. The effect of selectively increasing the
cost of the weighting parameters is to cause a tighter fit
between the pseudo-filter and the designed filter t the
frequencies selected. Otherwise, the cost in the least
squares sense of misfit at these freqencies would be
high.

Figure 2 includes a block diagram of the specific
structure investigated in this paper. The modeling filter
would be a true hR filter if the pseudo-filter output. were
replaced by the model filter output as indicated by the
dashed line. The error generated would then be the out-
put error between the lIP. modeling filter and the
pseudo-filter. This is not done since minimization of
this output error results in a highly nonlinear problem.
The configuration shown generates an error related to
the difference between the model and the pseudo-filter
equations and is thus refered to as an equation error
method. The equation error is a linear function of the
modeling filter coefficients, and therefore minimization
of the squared error is a quadratic minimization
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This structure is commonly used in the field of sys-
tem identification, and is a basic component of many of
the more elaborate structures that system
identification researchers have developed [4]. One
drawback is that there is no guarantee the resulting
filter will be stable, i.e., will have all of its poles inside
the unit circle. Methods for insuring filter stability will
be developed and discussed in sections III and IV.

III. MAThEMATICAl FORMULATION

In this section we show how to find the modeling
filter coefficients which best match the pseudo-filter.
Refering to Figure 2, we make the following definitions.
The input to both the pseudo-filter and the modeling
filter is given by

N
Ut = CkSlfl Wkt (i)

k =1

where ck represents the cost weighting and Wk
represents the radian frequencies at which the ideal
filter transfer characteristics are specified. The quanti-
ties N, Ck, and Wk, (lc1, . ,N) are free to be selected
by the user. The output of the pseudo-filter is given by

N
Vt = >jckmsin(wkt+çok) (2)

k=1

where mk and l°k are the magnitude and phase
specifications determining the desired filter charac-
teristics. The modeling filter output is

= B * Ut — As_i * (3)
where B and A represent the zero and pole coefficients
with order qand p. respectively. Note that if y is
replaced by Vt Eq. (3) would represent a general hR
filter. The justification for writing Eq. (3) as it stands, is
that y and Vt should be approximately equal. The error
is given by

(4)
= (a +A_i) * V Bt *

Note that this error is linear in the A and B parameters.
This is important when minimizing the squared error
since the solution is found simply by solving a set of
linear equations as will now be shown.

We now wish to find the coefficients of A and B which
minimize the squared error criterion.

Minimize e2 (5)
A,B

This can be restated in matrix notation as

Mm &'R8—2P78
e

B.8=RR P A

Let (hj) represent the row and column of the above sub-
matrices. Then

N
ccos[wk(i—j)t]

k=1
N

R,(ij) cm..zcos[w(i—j+t) —
10k]

k=1

R(ij) = R05(j,i) 1<i<p. 1<j<g

N
R(i,j) c,mcos[wk(i—j)] l<j<p
and

N
P(i) cinkcos[wki 10k]

N

P(i) = crn.cos[wk(i+t)]k1
and

l<i<q
B(i) = bt l<i<p
The solution to this minimization is found by solving the
following linear equations for 8.

(9)

The effect of hard linear constraints is to restrict
the coefficient vector 8 to some subspace defined by the
underdetermined set of linear equations C8 = d. Thus
the problem becomes,

Mm
{

8R — gpe
}

subject to C8 = d (10)

The solution to this problem can be found using
Lagrange multiplier techniques and is given by

= [I — R_iC(CTR_C)_lCT]R_lP (11)

+R_IC[CTR_1C]_id
Hard constraints can be used to design linear phase FIR
filters. A sufficient condition for a filter to have linear
phase is that its coefficients be symmetric about their
midpoint. This can be accomplished using linear con-
straints by letting C = [I I ], and d 0 where I is a
reversed identity matrix.

Similarly, soft constraints could be applied to the
filter coefficients. Unlike hard constraints, the soft con-
straints allow the coefficients to deviate from the con-
straint subspace with a resulting increase in cost. This
problem is written as

Mm { 8TR8_2P0+(CTO_d)TB(CT8_d)} (12)
B

where the constraining subspace is C0 = d. The solution
to this problem is

8;,, = [R + CBCT] [P + CBd] (13)
where B represents a weighting matrix usually choosen
as yl.

Nonlinear constraints may also be applied to the
filter coefficients. However, when nonlinear constraints
are applied, a closed form solution may not exist and
iterative methods for finding a solution must be used.

The unconstrained problem involves the solution of
a set of linear equations with a matrix that has a block

(7) Toeplitz structure. The solution can be found efficiently
by the use of the Levinson algorithm. The equations can
be solved with relative ease since only Or[(p+q)2] com-
putations and Or[(p +q)] memory locations are required.
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In some cases when designing a linearly con-
strained high order filter on a small computer, it may be
easier to implement a recursive method for finding the
filter coefficients. The LMS adaptive algorithm [5]
requires Or[p+q] memory and can often be easily con-
strained and applied to these problems. Computational

1<i<q

I<i <p

where

1<ij<q (8)

1<i<q, 1<j<p



time may be greater, but programming efforts and
memory requirements will be relaxed.

IV. FILTER DESIGN IMPLEMENTATION

One starts the design process by forming a discrete
set of psuedo-filter magnitude and phase specifications
that describe the response of the filter to be designed.
The number and location of these specifications can be
freely chosen by the designer to best describe the filter
response desired. A cost weighting is associated with
each magnitude specification. Typically this cost is ini-
tially set to one

The FIR case corresponds to the designer selecting
the number of poles to be zero (p=O), and choosing the
number of zeros (q—1). The solution then gives the set
of coefficients for the filter P. After viewing the
response of the filter B, the designer can increase the
cost weighting at certain specification points where a
tighter fit is desired. Additional specification points
may also be introduced to further improve the designed
filter response, and a final design is arrived at in an
interactive manner.

In the hR design case, the problem of unstable
poles must be handled. If the designer is only con-
cerned with the magnitude response of the final filter
(phase response is unimportant), the pole reflection
technique can be used. It is commonly known that the
poles of an unstable filter can be reflected inside the
unit circle, yielding a stable filter with identical magni-
tude response, but altered phase response. Therefore to
stablize the designed filter, the unstable poles are
reflected inside the unit circle.

In the hR design case when the phase of the
designed filter is important, the designer has two alter-
natives. The first is to make the chosen phase
specification points reasonable for a stable TIP, filter that
has the chosen magnitude specification points. Depend-
ing on the filter to be designed, this may or may not be
easy to do. For the standard filter types such as lowpass
and highpass, the characteristic phase responses of
stable filters are well known and can be used as guide-
lines for the chosen phase specifications. When design-
ing filters thaI. have a more general magnitude
response, some thought and experimentation may be
neccessary to pick phase specifications that will result
in stability of the designed filter, and a final stability
check is needed.

The second alternative, when strict adherence to
design phase characteristics is important, is to place
constraints on the A filter coefficients. Since the poly-
nomial that represents the denominator of the transfer
function of the designed filter can, without loss of gen-
erality, begin with a unit constant coefficient, constrain-
ing its higher order coefficients to be increasingly
smaller will tend to pull the poles of the filter in towards
the origin. Thus a soft linear constraint on the A filter
coefficients can be used to 'persuade the designed
filter to be stable. Alternatively, a nonlinear constraint
on the A filter eoefficient,.s that forces the filter poles to
remain inside the unit circle can be implemented. This
requires the use of some recursive solution technique,
such as a suitably constrained version of the LMS adap-
tive algorithm.

V. SIMULATION RESULTS
Figures 3a,b and 4 are the results of some filter

design simulations. The cross marks in the figures
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represent the magnitude, phase and cost weighting
points specified for the desired (psuedo) filter, and the
continuous curves represent the response of the result-
ing filter design. Figures 3a,b demonstrate the design of
a 50 weight FIR. filter that has a magnitude response
that initially increases and then sharply cuts ofT. A
linear phase response was specified. The virtuosity of
the technique is clear. This is no mere Butterworth or
Chebyshev design. Figure 3b shows how increasing the
cost weighting at some of the specification points can
tighten the fit (in both magnitude and phase) of the
designed filter.

Figure 4 shows a 9 pole, 9 zero fIR lowpass filter
design. For this simple example, the phase specification
points were chosen so as to result in a stable filter. The
design provides fiat pass band response, sharp cutoff,
and close adherence to a -50 db gain in the stop band.

VI. CONCLUSION
In this paper we have developed a new technique for

the design of FIR or hR digital filters. It has been shown
that the technique is easy to implement and possesses
flexibility in the design process. These two traits make
the PFIJT a desirable addition to any digital filter design
package.

The general system identification framework on
which this technique is based suggest the possibility of
utilizing more elaborate identification structures.
Methods for implementing nonlinear constraints on the
filter poles are currently undergoing development. One
such method involves the use of either second order
sections or a lattice filter in order to maintain filter sta-
bility. Techniques for implementing an adaptive cost
weighting are being investigated. The application of out-
put error minimization techniques are also being
researched.
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