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Abstract

An uncertain plant will track an input command
signal if the plant is preceded by a controller which
approximates the inverse of the plant’'s transfer
function. The controller parameters can be
obtained by an adaptive inverse modeling process
applied to the plant. If realized as a transversal
filter, the ¢ontroller will be stable whether the plant
is minimum or non-minimum phase. Instabilities in
the adaptive process which could arise when an
adaptive filter is succeeded by a plant in cascade
are overcome by the "filtered X" LMS algorithm.
This new form of the LMS algorithm converges to a
Wiener solution which is unbiased by plant noise
‘and/or drift. The "filtered-X" LMS algorithm offers
a simple and economical solution for a variety of
practical problems.

I. Introduction

The LMS algorithm of Widrow and Hoff has
proved to be a useful tool in a variety of fields for
adjusting the parameters of adaptive systems [1,2].
This paper focuses on the servo problem in the field
of adaptive control. The parameters of the con-
troller are adapted so as to make the overall
transfer function of the controller-plant best match
the transfer function of a given reference model.

‘The approach taken in this paper differs from
the classic stochastic control approach [3]. It was
shown [4] that controllers based on stochastic con-
trol do not present an appropriate solution for the
control problem when the plant has a non-minimum
phase characteristic. Self tuning regulators based
on a linear quadratic Gaussian criterion [5] can
cope with non-minimum phase, but they increase
the amount of computation, thus making the solu-
tion impractical for real time implementation with
small computers.

The "overall transfer function" approach was
used in [8]. The algorithm proposed in that paper
constructs a controller whose transfer function is
the inverse of the plant transfer function. Thus the
output of the plant will follow a desired command

signal. This controller will fail to converge with
non-minimurn phase plants.

Another "overall transfer function” approach is
the self-tuning controller based on pole zero place-
ment [7]. It can be shown that this controller is an
adaptive version of the combination of observer and
state feedback [8]. The self-tuning controller based
on pole zero placement circumvents the non-
minimum phase problem by allowing the non-
minimum phase zeroes to remain as part of the
overall transfer function. Thus when we have a

,on-minimum phase plant, the output of the plant

cannot be forced to follow the output of the refer-
ence model.

An adaptive inverse control scheme that can
cope with a non-minimum phase plant without
increasing the amount of computation was intro-
duced in [2]. The controller converges to a delayed
plant inverse, thus yielding an overall transfer func-
tion of pure delay. Though the inverse controller
was not designed from a regulator point of view, it
was shown that it can eliminate drift at the output
of the plant.

In this paper a further extension of [2] is
presented. It will be shown that the inverse con-
troller of [2] fails to converge to the true inverse in
presence of plant noise. A new noise-immune algo-
rithm called the 'filtered-X" LMS algorithm is
presented here. The parameters of the controller
are adapted so as to achieve an unbiased inverse
controller for minimum and non-minimum phase
unknown plants. The only information which is
needed about the unknown plant is an upper bound
on the transport delay of the plant. The perfor-
mance of the "filtered-X'" LMS algorithm in the pres-
ence of additive plant noise is discussed.

II. Adaptive Inverse Control with Model Reference

The adaptive control problem can be stated as
follows: Take as given a plant with transfer function
H,(2z), whose parameters are known or time varying.
Then adaptively construct an FIR controller such
that the output of the plant c; will best follow (in
the MSE sense) the output of a reference model Yy

The time index is j.
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Fieure 1. ADAPTIVE REFERENCE MODEL CONTROLLER SYSTEM.

A basic scheme for constructing an adaptive

controller is introduced in Figure 1. This scheme is .

based on the methodology taught in [2]. Using the
LMS algorithm we adapt the parameters of the
adaptive controller so as to minimize the mean
square of error ¢;. Because the adaptive controller
is by definition time varying, it does not have a
transfer function. For ease of explanation, let us
freeze the parameters of the adaptive controller
after they have converged.

At that time

Hynknown plant - H adaptive controller ~™> H reference model (2- 1)

where by - we mean "converged to the best match
in the MSE sense.” From (1) we get

H reference model

2.2
H unknown plant ( )

H adaptive controller

In the special case when the reference model is a
pure delay, the transfer function of the adaptive
controller converges to a delayed inverse of the
unknown plant.

The parameters of the controller are copied
and used to construct a series controller. Since the
overall transfer function of the controller and the
unknown plant matches the transfer function of the
reference model, the output of the unknown plant
c; will follow the signal at the output of the refer-
ence model Ymy

III. Effect of Plant Noise on the Convergence
' of the Adaptive Controller

When the plant is noise-free, the parameters of
the adaptive controller converge in accord with
(2.2). Once we introduce the possibility of plant
noise additive at the output of the plant, the adap-
tive solution for the parameters of the controller
becomes biased from solution (2.2). Thus the
overall transfer function of the controller-plant
does not match the transfer function of the
reference model. See Figure 1.

The optimal noise free Wiener solution for the
controller problem is given by

Wopt = B*. Py (8.1)
where
R, = E[¢ . ] (3.1a)
P, = E[G . Ym,] (3.1b)
C}. = {c,—, Cj_1,Cj—p, Cj,.l'_N;T
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Due to additive noise at the output of the unknown
plant, the parameters of the adaptive controller
converge to

Wins = Rﬁ,’ . Py (3.2)
where
Ry = E[(G+N;) . (G+N))T] (3.2a)
Pp = E[(G+N;) . Ym,] (3.2b)
Nj = {nj, myq mya, .. naon)

Under the assumption that the input is uncorre-
lated with the noise, we get

Rp = ELGC]1+ E[N;Nf] (3.3a)
= R, + Rn
Rp = E[(CGi+N; ) Um; = Fe (3.3b)
Using (3.2) and (3.3) we get
Wins = [ +E. 1. P, (3.4)

2

This solution is biased from (2.2) as a result of plant
noise. Using the "ABCD Lemma" of linear algebra,

[A+BCD]™ = A — A7'B[DAT'B + CT']* DA™ (3.5)

we get
Wiws = R1P,—R\Ry[R7Ry + IT' R7P,  (3.6a)
Wins = Wopt — RBN[RRy + I Wope  (3.6D)
Wins = Wope — bias (3.6¢)
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FiGuRE 2. LEARNING GRAPH OF THE ADAPTIVE DELAYED INVERSE MODEL.

The term R, 'Ry has the interpretation of a matrix
version of the noise to signal ratio. This ratio, which
is a matrix rather than a simple scalar, is a function
of the spectrum of the output ¢; and the noise n;.

Figure 2 shows the convergence of one normal-
ized weight of a simulated adaptive inverse model
controller. As can be seen from Figure 2, for a
noise-free plant the weight converges to the true
inverse solution. However, when additive noise is
present at the output of the plant, the weight con-
verges to a biased solution. The bias in the weight
can be calculated from (3.6b). Increasing the noise
to signal ratio (without changing either the spec-
trum of the noise or the spectrum of the signal)
increases the bias in the parameters of the con-
troller. Another effect of the additive noise at the
output of the plant is an increase in the noise com-



‘ponent of the controller parameters. This effect
can be reduced by reducing the adaption step size
¥, consequently making the adaption process
slower. ‘

- IV. The Filtered-X LMS Algorithm.

~ The problem of plant noise has been attacked
through a fresh approach to inverse modeling. This
has motivated the development of a new algorithm:
the "filtered-X" LMS algorithm. This method allows
adaptation of the inverse filter placed forward of
the plant in the cascade sequenge. The adaption
input is first prefiltered by some H(z). Plant noise
does not appear in the adaptive filter input when
this algorithm is practiced. But plant noise clearly
is a component of the error 7, as seen in Fig. 3. In
accord with Wiener theory, this noise will have no
effect on the converged solution for the inverse
filter.

FIGuRe 3. ThE FILTERED-X LMS ALcortTHN,

The mean square of the error &; in Fig. 3'will be
a quadratic function of the adaptive filter weights.
Therefore, adaptation has the potential for smooth
convergence with a unimodal mean square error
function.

We now show that the filtered-X LMS algorithm
causes convergence in the mean to the inverse
filter.

The weight vector update equation is
Win = Wy + 2ue;(h; * X7

Wy + 2y —hy WGy X))

=Wy + 2udsh s X] — 2uny » WIXT P R (4.2)

(4.1)

i}

where * denotes the convolution opgrator, and
itis understood that the Z -transform of A jis H(z).

From (4.1) we get

j—1 -~
Wy = W, + 2/32 g (X7 * b)) (4.3)
=0
Thus #; depends on the values Xj0X 2 - X,

- Also
=1 - -~
WiXe = WoX; + ZM{Z% g (X hy)X;
=

BOGK) = BOWX) + 2B (S s h0X) (4.4)

If X; is a white sequence with zero mean, then X; is
uncorrelated with X;_, etc. and therefore W; is
uncorrelated with X;.  But since X; has been filtered

by A (z) we have essentially the situation of corre-
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lated inputs for which E( W;X;) is not zero. From (9
E(W;X;) is proportional to M also E(W;X;) decays
exponentially with |i—j| for large li—j[. Since X;
has zero mean we can make the correlation of Wi X;
as small as we like by a suitable choice of m.- That is,
for x4 small enough W; and X; are essentially
uncorrelated. With this assumption taking expecta-
tions in Eq. (4.2) yields, . ,
E(W;i) = E(W;) + RuE (dsh 5 * XT)
| ~ BUE(W)E(hy * X;X]* B ;)
E(W;s1) = E(W;) +2uB(d;Y])
—BuE(W;)E(Y;Y]) (4.5)

where f’,- = }:J-*XJ-.‘
Assume E(Y; Y £}
(1) is finite (requires H(z) to be stable)

(R) is non-singular  (requires some correlation
- between g; and ¥5). This implies that the model
should have at least one weight of delay n where

n is the number of pure delays in the plant.

Therefore from [9]
Jim E(H) = RF'P;
where
5
BT

E(G;Y])
E(d;Y])

[t}

Assume that the X vector is derived from a double
sided, doubly infinite tapped delay line. Then the Z
transform of the optimum weight vector sequence is
HY(2)H (20831 (2) 8, (2)H(27Y)
= Hz)0(2)®,4(2) (4.6)
which is the Wiener solution.

An alternative form of the filtered-X LMS algo-
rithm is shown in figure 4. This structure has simi-

lar properties to the configuration of figure 3 since

Wisr = W; + 2ue;(Y;)
= W+ _uld;-WIY))Y;

FIGURE 4. ALTERMATIVE FILTERED-X LMS ALGORITHH.

which is the same as Eq. (4.2). Hence similar con-
vergence results hold here. Both structures con-
verge to the same solution, which is unaffected by
additive plant noise. It suffices to show that the
orthogonality condition of Wiener filters [10],




E(gjz;) = 0, leads to the following Wiener solution .
E((d;=W]Y; + n;)¥;) = 0
ie. W' = R7'\P,

, assuming n; and X; are uncorrelated and
R = Ry
P = Ry

V. Bounds on Covergence Rate

We stated previously that it was necessary to
filter X; such that &; and X; (filtered X;) are corre-
lated. We now reason that a good choice of X; is
simply to delay X; by the same amount as the pure
delay in the plant.

If the only e priori knowledge available is a
bound on the plant delay, then it is necessary that
the delays of the components of X; at least equal
that bound. Since the speed of convergence of the
adaptation process is limited by the eigenvalue
disparity in the covariance matrix [9,13], we investi-
gate the effects of choice of # on this matrix.

If the plant transfer function is 2"?7H(z) where

H(z) is any rational transfer function, and
H(z) = 279,
then
yo'go yogl yogn
YiYo YiY1 Y1Yn
Y; AJ'T =
yn'.‘jo yn!;:l yngn
Taking Expectations gives
hy Ry - Ry
0 h, - hyp
S AHLES N ~
0 0 - h
smce .
E(ngi) =0 for i <j
= by fori=j

All the eigenvalues are the same, which implies
that, subject to the operating assumptions for a
small fixed u, the speed of conyergence will not be
improved by another choice of H (2).

It is common to choose H; = H; . This leads to

BE ohy co hoha

hlho hoz hlhn
E(YJ AJZ) = '

P huhy oo hE
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where all eigenvalues are in general not the same.

In practice the LMS algorithm will usually be
operated with a small u to maintain a small misad-
justment [11]. With small gz the above analysis
gives bounds on the convergence rate of the
filtered-X LMS algorithm in terms of the eigenvalues
of the covariance matrix. The misadjustment of the
filtered- X LMS algorithm is currently under study.

VI. Simulation of Adaptive Inverse Control
With Model Reference.

The idea of model reference control [12] is to
build, design, or to adapt a system in such a way
that its overall input-output response characteristic
best matches a reference model response or some
form of ideal response. It is easy to include a
model-reference feature in adaptive inverse control
systems of the type shown in Fig. 3. The idea is
expressed in Fig. 5.

INVERSE

1 Mover

/

LMS
ALGORITHM

REFERENCE
MoDEL _

Prant H(z)

FIGURE 5, ADAPTIVE INVERSE CONTROL WITH MODEL REFERENCE.

It is important that a reference model response
be chosen that can be accurately realized by the

cascaded adaptive filter and the plant P(z), given

that the weights of the adaptive filter are set to
minimize mean square error. The system of Fig. 5
will perform remarkably well as long as it is given a
feasible task. It should not be asked to respond fas-
ter or more intricately than it is able for the given
plant P(z) and its FIR adaptive transversal con-
troller. If the plant has transport delay or is non-
minimum phase, inclusion of a delay A will give
more precise model tracking but a delayed
response.

An experiment was performed with the model
reference adaptive inverse control system of Fig. 5.

2.4z71(1-.827hH

Plant: (1+.621)(1-72 1)
. .25z"!
Reference Model: ——————(1_'52_,)2

Thirteen model weights and forty five controller
weights were used. The input to the entire system
consisted of white noise. The step response of the
uncompensated plant is given in Fig. 6. Figure 7
shows the step response of the compensated plant
superimposed on the step response of the reference
model. The quality of the fit depends on the
number of weights one allows for in the controller.
As is evident from the figure a very close match
between the model output and the entire control




system output can be obtained with only a
moderate number of weights.
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The adaption was repeated with additive white
noise at the plant output of normalized amplitude
0.1 (normalized with respect to the system input).
Figure 8 shows the step response using the "noisy”
weights. As expected there is a degradation propor-
tional to the amount of plant noise present.

VII. Conclusions

A method for adaptive inverse control unbiased
by additive plant noise has been introduced. The
technique is easy to implement and exhibits robust,
predictable behaviour. Research is ongoing in this
area and further results will be reported in the
future.
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