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ABSTRACT

The digital Fourier transform (DFT) and the
adaptive least mean square (LMS) algorithm have
existed for some time. This paper establishes a
connection between them. The result is the "LMS
spectrum analyzer," a new means for the calculation
of the DFT. The method uses a set of N periodic
complex phasors whose frequencies are equally spaced
from DC to the sampling frequency. The phasors are
weighted, then they are summed to generate a recon-
structed signal. Weights are adapted to realize a
best least squares fit between this reconstructed
signal and the input signal whose spectrum is to be
estimated. The magnitude squares of the weights
correspond to the power spectrum.

For a proper choice of adaptation speed, the
LMS spectrum- analyzer will provide an exact N-sample
DFT. New DFT outputs will then be available in
steady-flow after introduction of each new data
sample.

INTRODUCTION

During the past several years, work has been
ongoing in the Electrical Engineering at Stanford
University to determine the applicability of adapt-
ive signal processing algorithms to problems in
spectral analysis. Since Fourier techniques are in
themselves least squares methods, one could believe
that least squares adaptive algorithms might be some-
how connected to Fourier analysis. Such a connect-
ion has been found. It is possible to compute a
signal's digital Fourier transform exactly by maklng
use of the LMS adaptive algorithm [1,2,3]. The
method of calculation leads to an "LMS spectrum

dnalyzer."

The work reported in this paper has been abstra-
cted from a more complete paper on the subject entit-
led "The LMS Spectrum Analyzer" by B. Widrow, P.
Baudrenghien, M. Vetterli, and P. Titchener [4].

Our objective here is to explain the approach and to
state the principal results of the complete paper.

AN LMS SPECTRUM ANALYZER FOR THE
COMPUTATION OF THE DFT

The LMS spectrum analyser, an adaptive system
that could be used in the calculation of the DFT, is
shown in Fig. 1. In this system, the input signal

d. to be Fourier analyzed is sampled, and the time
Jlndex is j. The sampling period is T, and the
sampling frequency is o

T

The input d. could be real or complex. The weights
Wos Wis eas”W will in general be complex. The

same 1s true for the weighted sum yJ and for the
error é?J. The weights are adjusted or adapted in
accord with the complex LMS algorithm of Widrow,

"McCool, and Ball [2].

Wis1 = W; + 28, X;

This algorithm minimizes the mean square of the
complex error ., i.e. minimizes the mean of the

sum of the squares of its real and imaginary parts.
The terms in the equation are defined as follows:
wj is the current complex weight vector. W.,, is the

j+1
next complex weight vector.

-\V of
le'
w; A
| W(N-1)j ]
The complex error 6;3 is given by
€ = d;-y; , where
Y; = X,-T w; , and where
. .
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e N
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Note that X, is the conjugate of X j and that i = -1.
The result of the adaptive process is wj, which will
be associated with the DFT of dj' N

The choice of the phasor components of the X

vector can be explained in the following way. We
have used a total of N basis frequencies, including
zero frequency. The fundamental basis frequency is
JLL/N. The entire set of basis frequencies span the
frequency range from zero up to the sampling frequen-

J

cy Lk . The fundamental phasor, a time function ex-
pressed in terms of the discrete time index j, is
' &7
N

[ .
Since QT = 2w, this can be written as

27 .
2

Q.
3T
= e N

e N

All of the components of the X-vector are powers. of
the above. A normalization factor 1/y"N has been
included to simplify the analysis of the. system of
Fig. 1. It causes the Xj—vector to have unit power.

The complex LMS algorithm is used to obtain the
weights. The weight iteration formula can be expres-
sed as ’

Wipr = W+ 286, X;
W; + 2pXj(d;-y;)
v T
W; + 2pX;(d;-X7W;)
T
W; + 2pd;X; - 2uX; XW;

Let the initial weight vector be set to zero. On a
step by step basis, the weight vector versus time
can be induced. Using the formula above,

w, = (I-2pX,XD) W, + 2pd, X,
= (I-2pX, XD 0+ 244, X,
= 2ud,X,
Next,
W, = (I-2pX, X)Wy + 2pdi Xy

opd, X, - 4p?2 X, XTX,d, + 2pd X,
2”(dofo+ dl)?l) - 4”2X1(X1T‘Yo)do

This can be simplified to

W2 = 2”(do)?o+ le-l)
Next,
Ws

(120X, X)W, + 2nd X,
. 2u(d, X, + d Xy + doX) - 42X (XX, d,+ XiX,dy)
This can be simplified to

W3 == 2[1((1‘,X0+ dl)—(l"‘. dZX-?)
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We can easily generalize this result:

‘-—l N .
W, = 2p 53 &, X, , =1, ., N
m=0
An interesting case is that for j = N. From this

relation we obtain

Except for the scale factor, it is clear from the
above that the elements of W, comprise the values of
the DFT of d. over the unifoum time window from j = 0
to j = N-1.

This formula is based on orthogonality of X-
vectors at different times and it applies for
1£ j4N. "Beyond this range, we need a new formula
since, for example, Xo_is identical to and of course

not orthogonal to XN.
With some further algebraic work along the same
lines, a completely general formula for wj can be

derived which would be applicable over all j=1, )
assuming the initial condition W = 0. The result is

2I‘§ dm

m=)-N

Wi X

j-N-1
by

m=j-2N

+ 2[‘(1"21‘) dm Xm

7-2N-1
by

m=3-3N

+ 2[‘(1*2")2 dm)_(m

J-3N-1
by

m=j-4N

d

+ 2p(1-2p)3 X

In using this formula, it is understood that the
allowed ranges of the index m for each of the sums
is set by the upper and iower limits unless these
limits are negative. The ranges of m must first be



m=0, then determined by the sum's limits. Thus in
applying the formula, one sees that for N= j>0
only the first term in the series exists, all the
rest are zero, and the first term agrees as it
should with the previously derived formula for j = N.
A critical choice of/LLis the value/LL =~%.
Making this choice, the above series reduces to its
first term regardless of the value of j. Let M =~%
and let j be any integer multiple of N. wj will be

proportional to the DFT of the previous N samples of
dj' Thus, at time £ N, the formula for wj becomes

IN-1 —
Wiy = 2 dem
m=IN-N
[ IN-1
dm
m=IN-N
: .27
IN-1 -==m
dne
m=IN-N
= L
vN
2x(N-1
IN-1 -t m
Y dye N
| m=IN-N

It is evident from this expression that Wy 1is
indeed proportional to the above stated DFT.

CONCLUSION

We have shown that the LMS algorithm can be
used to calculate the DFT. After each block of N
data samples are analyzed, the components of the
adaptive weight vector comprise the respective fre-
quency components of the DFT. It is shown in [4]
how the system of Fig. 1 can be used to calculate
the DFT in steady flow, giving an instantaneous DFT
every sampling period.

The digital Fourier transform is only an appro-
ximation to the true Fourier transform. The LMS
algorithm in turn only approximates a true least
squares solution. However when the weights in Fig.
1 are driven by LMS with = 1/2, the DFT of the
input signal dj is given‘exactly by the LMS weights,

no approximation is involved. Evidently, the appro-
ximations inherent in the DFT are matched by the
approximation inherent in the LMS algorithm.
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d. INPUT TO BE ANALYZED
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Fig. 1 The LMS Spectrum Analyzer
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