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I. Abstract 

Adaptive control is seen as a two part problem, (a) control of 
plant dynamics, and (b) control of plant disturbance. Con- 
ventionally, one uses feedback control to treat both problems 
simultaneously. Tradeoffs and compromises are necessary 
to achieve good solutions, however. 

The method proposed here, based on inverse control, treats 
the two problems separately without compromise. The 
method applies to SISO and MIMO linear plants, and to 
nonlinear plants. 

An unknown linear plant will track an input command signal 
if the plant is driven by a controller whose transfer function 
approximates the inverse of the plant transfer function. An 
adaptive inverse identification process can be used to obtain 
a stable controller, even if the plant is nonminimum phase. A 
model-reference version of this idea allows system dynam- 
ics to closely approximate desired reference-model dynam- 
ics. No direct feedback is used, except that the plant output 
is monitored and utilized by an adaptive algorithm to adjust 
the parameters of the controller. Although nonlinear plants 
do not have transfer functions, the same idea works well for 
nonlinear plants. 

Control of internal plant disturbance i s  accomplished with 
an adaptive disturbance canceler. The canceler does not af- 
fect plant dynamics, but feeds back plant disturbance in a 
way that minimizes plant output disturbance power. This 
approach is optimal for linear plants, and works surprisingly 
well with nonlinear plants. 

II. Introduction 

Many problems in adaptive control can be divided into two 
parts: (a) control of plant dynamics, and (b) control of 
plant disturbance. Very often, a single system is utilized 
to achieve both of these control objectives. The approach of 
this paper treats each problem separately. Control of plant 
dynamics can be achieved by preceding the plant with an 
adaptive controller whose transfer function is the inverse 
of that of the plant. Control of plant disturbance can be 
achieved by an adaptive feedback process that minimizes 
plant output disturbance without altering plant dynamics [4]. 
The adaptive controller is implemented using adaptive fil- 
ters. 
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III. Adaptive Filters 
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An adaptive digital filter, shown in Fig. 1, has an input, 
an output, and another special input called the “desired re- 
sponse.” The desired response input is sometimes called the 
“training signal.” 

Input output 
xk - Y k  

Desired Response dk 

Fig. 1. Symbolic representation of an adaptive transversal 
filter adapted by the LMS algorithm. 

The adaptive filter contains adjustable parameters that con- 
trol its impulse response. These parameters could, for ex- 
ample, be variable weights connected to the taps of a tapped 
delay line. The filter would thus be FIR, finite impulse re- 
sponse. 

The adaptive filter also incorporates an “adaptive algorithm” 
whose purpose is to automatically adjust the parameters to 
minimize some function of the error (usually mean square 
error). The error is defined as the difference between the de- 
sired response and the actual filter response. Many such al- 
gorithms exist, a number of which are described in the text- 
books by Widrow and Stearns [ 11 and by Haykin [2]. 

IV. Inverse Plant Modeling 

The plant’s controller will be an inverse of the plant. In- 
verse plant modeling of a linear SISO plant is illustrated in 
Fig. 3. The plant input is its control signal. The plant out- 
put, shown in the figure, is the input to an adaptive filter. 
The desired response for the adaptive filter is the plant input 
(sometimes delayed by a modeling delay, A)AMinimizing 
mean square error causes the adaptive filter P-’ to be the 
best least squares inverse to the plant P for the given input 
spectrum. The adaptive algorithm attempts to make the cas- 
cade of plant and adaptive inverse behave like a unit gain. 
This process is often called deconvolution. With the delay 
A incorporated as shown, the inverse will be a delayed in- 
verse. 
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Fig. 2. Adaptive inverse model control system. 
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Thus far, the plant has been treated as disturbance free. But, 
if there is disturbance, the scheme of Fig. 4 can be used. A 
direct plant modeling process, not shown, yields p, a close- 
fitting FIR model of the plant._The difference between the 
plant output and the output of P is essentially the plant dis- 
turbance. 

Disturbance, nk 

Fig. 3. Delayed inverse modeling of an unknown plant. 

For sake of argument, the plant can be assumed to have 
poles and zeros. An inverse, if it also had poles and ze- 
ros, would need to h,we zeros where the plant had poles and 
poles where the plant had zeros. Making an inverse would 
be no problem except for the case of a nonminimum phase 
plant. It would seem that such an inverse would need to 
have unstable poles, and this would be true if the inverse 
were causal. If the inverse could be noncausal as well as 
causal, however, thein a two-sided stable inverse would exist 
for all linear time-invariant plants in accord with the theory 
of two-sided z-transforms. For useful realization, the two- 
sided inverse responise would need to be delayed by A. A 
causal FIR filter can approximate the delayed version of the 
two-sided plant inverse. The time span of the adaptive filter 
(the number of weights multiplied by the sampling period) 
should be made adequately long, and the delay A needs to 
be chosen appropriately. The choice is generally not critical. 

The inverse filter is used as a controller in the present 
scheme, so that A becomes the response delay of the con- 
trolled plant. Making A small is generally desirable, but the 
quality of control depends on the accuracy of the inversion 
process which sometimes requires A to be of the order of 
half the length of the adaptive filter. 

A model-reference inversion process is incorporated in the 
feedforward control system of Fig. 2. A reference model 
is used in place of the delay of Fig. 3. Minimizing mean 
square error with the system of Fig. 2 causes the cascade 
of the plant and its ‘’model-reference inverse” to closely ap- 
proximate the response of the reference-model M. Much is 
known about the design of model reference systems [3]. The 
model is chosen to give a desirable response for the overall 
system. 
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Fig. 4. Optimal adaptive plant disturbance canceler 

Now, using a digital copy of P^ in place of P, an off line 
process, shown in Fig. 4, calculates the best least-squares 
plant inverse Q. The off line process can run much faster 
than real time, so that as P is calculated, the inverse Q is 
immediately obtained. The disturbance is filtered by a digi- 
tal copy of Q and subtracted from the plant input. For linear 
systems, the scheme of Fig. 4 has been shown to be optimal 
in the least-squares sense [4]. 

To illustrate the effectiveness of adaptive inverse control, a 
non-minimum phase plant has been simulated, and its im- 
pulse response is shown in Fig. 5(a). The output of this 
plant and the output of its reference model are plotted in 
Fig. 5(b), showing dynamic tracking when the command in- 
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put signal is a random first-order Markov process. Tracking 
is quite good. With disturbance added to the plant output, 
Fig. 5(c) shows the effect of disturbance cancelation. Both 
the desired and actual plant outputs are plotted in the figure, 
and they become close when the canceler is turned on at 300 
sampling periods. 

V. Nonlinear Adaptive Inverse Control with Neural 
Networks 

Nonlinear inverse controllers can be used to control nonlin- 
ear plants. Although the theory is in its infancy, experiments 
can be done to demonstrate this. A nonlinear adaptive fil- 
ter is shown in Fig. 6. It is composed of a neural network 
whose input is a tapped delay line connected to the exoge- 
nous input signal. In addition, the input to the network might 
include a tapped delay line connected to its own output sig- 
nal. This type of nonlinear filter is called a Nonlinear Au- 
toRegressive with exogenous Input (NARX) filter, and has 
recently been shown to be a universal dynamical system [5]. 
Algorithms such as real-time-recurrent-learning (RTRL) [6] 
and backpropagation-through-time (BPTT) [7] may be used 
to adapt the weights of the neural network to minimize the 
mean squared error. If the feedback connections are omitted, 
the familiar backpropagation algorithm may be used [8], [9]. 
In the nonlinear adaptive inverse control scheme of Fig. 7, 
such filters are used as the plant emulator and controller. 

Fig. 5. (a) Impulse response of the non-minimum 
phase plant used in simulation: (b) Dynamic 
tracking of desired output by actual plant out- 
put when the plant was not disturbed. The grey 
line is the desired output and the black line is 
the actual plant output. The control scheme was 
model-reference based, with a jirst-order one- 
pole model; (c) Cancelation of plant disturbance. 
The grey line is the desired output and the black 
line is the actual output. The disturbance can- 
celer was turned on at iteration 300. 

Nonlinear systems do not commute. Therefore, the sim- 
ple and intuitive block-diagram method of Figs. 2 and 3 for 
adapting a controller to be the inverse of the plant will not 
work if the plant is nonlinear. Instead, a lower-level mathe- 
matical approach is taken. We use an extension of the RTRL 
learning algorithm to train the controller. This method can 
be briefly summarized using the notation of ordered deriva- 
tives, invented by Werbos [8]. The goal is to adapt the 
weights of the controller to minimize the mean squared er- 
ror at the output of the system. We use the fact that the 
controller computes a function of the form 

uk=g(uk-l,uk-2, ..., U k-m,rk,rk-lj . . . , rk  - q ,  w), 
where W are the weights of the controller’s neural network. 
We also use the fact that the plant model computes a function 
of the form 

Y k  = f (Yk-1,  yk-27.. Yk-n ,  uk, U k - 1 , .  . . 3 uk-p). 

The weights of the controller are adapted using steepest de- 
scent. The change in the weights at each time step is in the 
negative direction to the gradient of the system error with 
respect to the weights of the controller. To find the gradient, 
we use the chain-rule expansion for ordered derivatives 

a+llek1I2 aiYk ___ = -2ek- aw aw 
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Fig. 6 .  An adaptive nonlinearjlter composed of a tapped delay line and a three-layer neural network. 
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aw 4- $ (5) (7) a+uk-j weights. This term is the one normally calculated by the 

backpropagation algorithm to update the weights of a static 
neural network. 

The second part of Eq. (1) is a summation. The first term 
of the summation is the partial derivative of the controller's 
current output with respect to a previous output. However, 
since the controller is ex jernall y recurrent, this previous out- 
put is also a current input. Therefore the first term of the 
summation is really just a partial derivative of the output of 
the controller with respect to one of its inputs. By defini- 
tion, this is a submatrix of the Jacobian matrix for the net- 
work, and may be computed using the dual-subroutine of the 
backpropagation algorithm. 

The second term of the summation in Eq. (1) is the ordered 

-I- 2 (z) (2). (2) 

Each of the terms in Eqs. (1) and (2)  is either a Jacobian ma- 
trix, which may be calculated using the dual-subroutine [ 101 
of the backpropagalion algorithm, or is a previously calcu- 
lated value of a+uk,'a W or a+yk/a W. 

To be more specific, the first term in Eq. (1) is the par- 
tial derivative of the controller's output with respect to its 
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Fig. 8. A f i l ly integrated nonlinear adaptive inverse control scheme. 
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partial derivative of a previous output with respect to the 
weights of the controller. This term has already been com- 
puted in a previous evaluation of Eq. (l), and need not be 
re-computed. 

A similar analysis may be performed to determine all of the 
terms required to evaluate Eq. (2). After calculating these 
terms, the weights of the controller may be adapted using 
the weight-update equation 

Power of Plant Disturbance 
I 

Continual adaptation will minimize the mean squared error 
at the system output. 

Disturbance canceling for a nonlinear system is performed 
by filtering an estimate of the disturbance with the nonlinear 
filter Q and adding the filter’s output to the control signal. 
An additional input 10 Q is the control signal to the plant, 
u k ,  to allow the disturbance canceler knowledge of the plant 
state. The same algorithm which was used to adapt the con- 
troller can be used to1 adapt the disturbance canceling filter. 
The entire control system is shown in Fig. 8. 

An interesting discrete-time nonlinear plant has been studied 
by Narendra and Parlbasarathy [ 111 

The methods just described for adapting a controller and dis- 
turbance canceler were simulated for this plant, and the re- 
sults are presented here. 

With the reference model being a simple unit delay, and the 
command input being an i.i.d. uniform process, the system 
adapted and learned  to track the model output. The result is 
shown in Fig. 9(a). A.fter training with the random input, the 
adaptive process was halted. With no further training, the 
system was tested with inputs of different character in order 
to demonstrate the generalization ability of the controller. 
The first test was a siine-wave command input. Tracking was 
surprisingly good, as shown in Fig. 9(b). Again, without 
further training, the system was tested with a square-wave 
command input, and the results, shown in Fig. 9(c), are ex- 
cellent. 

A disturbance canceler was also trained for this plant, where 
the disturbance was a first-order Markov signal added to the 
plant output. Fig. 10 shows the results of disturbance can- 
celation. The power of the system error is plotted versus 
time. The disturbance canceler was turned on at iteration 
500. Dramatic improvement may be seen. 

A great deal of work will be needed to gain greater under- 
standing of this kind of behavior, but the prospects for useful 
and unusual performance and for the development of new 
control theory seem very promising. 

Iteration 
Fig. 10. Cancelation of plant disturbance for a nonlinear 

plant. The disturbance canceler was turned on at itera- 
tion 500. 
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