NEUROINTERFACES: LEARNING BY GENETIC
ALGORITHMS

Marcelo Malini Lamego! Edson de Paula Ferreira

2

Bernard Widrow 3

Stanford University, E.E. Dept., CA 94805-9510 USA,
mmlamego@stanford. edu

Abstract: This article aims at showing how Genetic Algorithm (GA) and Vector
Quantization (VQ) can be applied to the training of neurointerfaces. The GA in
combination with a vector-quantized neuron model are used to train a neurointerface
that helps a human operator to back up a scale model truck connected in a single-
trailer configuration. Copyright ©1999 IFAC

Keywords: Neural Nétworks, Genetic Algorithms, Vector Quantization, Inverse

Control, Adaptive Systems

1. INTRODUCTION

For many tasks, productivity, safety, and liability
conditions require a considerable degree of skill
from human operators. In order to overcome lack
of skill, special human-machine neurointerfaces
(Widrow et al., 1998) may be adopted. The basic
idea is to change the operational space through a
neural network, allowing the human operator to
interact with the process through less-specialized
commands. Accordingly, the operator devotes his
attention to solve a less complex problem, directly
at the task level. The objective is to improve the
productivity and safety levels of such tasks even
in the case of unskilled operators.

Typically, the design of neurointerfaces involves
the training of recurrent neural networks. This
comprises the search for a set of parameters
(weights) that are a solution for a predefined
objective function (mean-square error). Due to
the non-convex nature of the objective function, a
considerable number of local minima may exist.
Accordingly, the chances of a search algorithm
based on gradient techniques getting stuck in lo-

1 Ph.D. student sponsored by UFES/CNPq, Brazil
2 Visiting Professor sponsored by UFES /CAPES, Brazil
3 Professor

cal minima (with unacceptable objective function
values) are significant.

Genetic Algorithms (GA) (Holland, 1975) provide
an interesting alternative for neural network train-
ing. GA is an iterative procedure which maintains
a set of candidate solutions (populations). New
populations are generated by means of a ran-
domized “selection procedure” through idealized
genetic recombination operators (reproduction,
crossover and mutation). These features greatly
reduce the occurrence of local-minimum solutions
during neural network training.

Montana and Davis (1989) proposed the first
approach to evolve weights in a neural network
using GA. That is, they were using the GA instead
of backpropagation (Rumelhart et al., 1986) as
a way of finding a good set of weights that was
a solution for a neural network approximation
problem.

The computational effort to run a GA is usually
greater than the one required for a conventional
gradient-based method such as backpropagation.
Typical neural network applications require a
great number of parameters to be adjusted. Due
to the discrete nature of genetic algorithms, every
weight in the neural network has to be quantized

and the resulting values represented by binary
strings (genes). These strings are concatenated
and form all the possible structures of a popula-
tion (chromosomes). The chromosome length is a
function of the number of weights and the adopted
weight quantization level. For instance, in a 100-
weight neural network topology, if an 8-bit rep-
resentation is used for each weight, the resulting
structures will have a length of 100 x 8 = 800 bits.
Normally, a population of the same order as the
chromosome length is used to prevent “small indi-
vidual variety”, cause of local-minimum solutions.
Since a simulation is required for each individual
in the population, in order to evaluate its relative
performance (fitness), the required computational
power may be prohibitive even for such a small
network.

In order to overcome the problem of fast growing
GA chromosome lengths in neural network train-
ing applications and, indeed, to reduce the compu-
tational complexity of GA runs, a more rigorous
approach can be adopted for the weight quantiza-
tion procedure. Particularly, Vector Quantization
(Gersho and Gray, 1992) can be used to fully ex-
ploit the statistical dependence among coefficients
of a neuron. A single Vector Quantization process
can be used to quantize all the weights of a neu-
ron, instead of scalar quantization for each neuron
weight. Here, the neuron’s weight “codebook” is
obtained by only assuming a few constraints on
its inputs and output signals.

This paper is divided in 4 sections. Section 2 in-
troduces a quantized model for a neuron. Section
3 discusses the design of neurointerfaces. Section
4 gives experimental results of GA and vector-
quantized neurons applied to a trainable neuroin-
terface application, the truck backer.

2. THE QUANTIZED MODEL OF A NEURON

Vector Quantization (VQ) in its simplest form
observers a real vector variable in a continuous
range of possible amplitudes and selects the cor-
responding nearest approximating values from a
predefined finite set of allowed numerical values
(the codebook). This idea will be used to greatly
reduce the number of bits required to represent
the weights, making GA optimization feasible.

The process of Vector Quantization maps the set
of real n-vectors, R", to a discrete output set.
More precisely, an N-point vector quantizer of
dimension n, here denoted by the capital letter Q,
can be defined as a mapping where Q : R* — C
is the output set or codebook defined as

CE{al,ag,-~' ,aN}CR” (1)

The output values a; are the reproduction values
(also designated as output points or output levels)

of the variables being quantized and N represents
the codebook size |C] = N.

In this paper, we are concerned with the process
of weight quantization of neurons. Therefore, the
weight vector of a neuron is quantized to form a
discrete variable, which can assume only a finite
number of real values defined by a particular
codebook. The inputs and output of each neuron
are continuous variables in predefined continuous
ranges of possible amplitudes.

VQ is usually, but not exclusively, used for the
purpose of data compression involving digital sig-
nals. Normally, the statistical data dependencies
among the elements of a signal vector are either
known or obtained through the preprocessing of
acquired data. This leads to a straightforward
application of nearest neighbor encoding -algo-
rithms for the construction of vector quantizer
codebooks.

Unfortunately, the same methodology is not valid
for the quantization of the neuron’s weights.
While the neuron’s weights may vary during the
adaptation process, their variations and statisti-
cal dependencies are extremely case conditional
and can only be obtained by solving (or almost
solving) the adaptation problem first.

In order to overcome this lack of information and
to provide a suitable quantized model for the neu-
ron, this paper presents an approach that allows
the evaluation of a codebook for the neuron’s
weight by assuming a few constraints in its input
and output signals. More precisely, the input and
output signals are considered enclosed in bounded

sets. This assumption is intrinsically true for the

neuron’s output. The sigmoid function of the neu-
ron provides the output saturation effect that al-
lows its activation over specific operation regions
of the input space. In addition, real signals always
operate in finite dynamic ranges. This makes the
bounded input consideration realistic.

‘We begin the weight quantization process by con-

- sidering the simplest version of a neuron, a linear

combiner, a bias weight and a smooth sigmoid
function.

The neuron equation is:

v=wlz +b (2)

y=f(v)
y,v,beR, w,x € R", |lz| < Xprax

z is the neuron’s input whose maximum norm
is Xprax. The weight vector is w, the neuron’s
output is y, and b is the bias. f is a monotone
increasing bounded real function (sigmoid).

. ;
i

In this analysis, the neuron is considered to be
unbiased (b = 0). The quantization of the bias
term will be discussed later in this section.

Letting b = 0, the first term of equation 2 can be
rewritten as

v = [lw] ||z]| cos 4, 3)

where ¢ is the angle between the input vector z
and the weight vector w.

Now, let a = ||z]| cos ¢ and equation 3 becomes
v=lula lol < Xuax @)

‘We assume that all possible projections of vector x
onto vector w are equally probable. Therefore, the
change of variables made in equation 4 is allowed.

In order to quantize w, we define a random version
for equation 4:

V=WA (5)

V, W and A are random variables with proba-
bility functions to be defined. They replace the
deterministic variables v, ||w|| and « in equation 4.

a has its dynamic range defined in equation 4.
Since there is no further information concerning
the statistics of «, all the possible positive values
in its dynamic range will be considered equally
probable. Thus, the random variable A takes the
place of o in equation 5. Its uniform probability
density function (pdf) is

ANU(O,XMA)(] (6)

Negative values of «, including the origin, are
not considered here to keep the calculations with
random variables simple. The same procedure
may be adopted considering its entire dynamic
range. However, it will not change the final result.

For a given A = «, the random version of w,
i.e. W, should be defined in such a way that
all possible values of v within its dynamic range
can be evenly reproduced. Because the sigmoid
function is bounded, there is a maximum for the
absolute value of v so that no significant change
in y occurs. Thus, the dynamic range for v can be
bounded by a positive constant Varax and the
random variable V is defined indirectly by the
conditional event

VIA~UI0,Vmax], (7)
which associated with equation 6 implies
V ~U|0,Varax] (8)

V and A and are independent and W can be
expressed as

\%4
W=~ 9)

(note that A is always greater than zero). Hence,
the random variable W will have its pdf given by:

_1_XMAX Vamrax

0< w<
2 Virax 7 Xumax
gw(w) =
1 Viax 1 . Varax
- — w >
2XMAX w XMAX

(10)

According to equation 10, values of w with norm
smaller than % are more likely to happen.
Thus, in this region, the weight vector w has
to be finely quantized. For values of w with
norm greater than % the discretization can

be rough. In this case, the bigger the norm of w,
the rougher the quantization can be.

In order to obtain an N-point vector-quantized
codebook for w, a distribution of points in R™
for w that obeys equation 10 has to be generated.
This can be performed in 3 (three) basic steps:

(1) Generate a set of unit vectors uniformly
distributed on a unit sphere in R™. This
can be done by first generating a uniform
distribution of points in a unit hyper-cube in
R™. Then, all the points with norm greater
than 1 (one) are discarded and the remaining
points are scaled to unit vectors. This will
result in M unit vectors (M > N) evenly
distributed on a sphere.

(2) Produce a set of M scalar points with distri-
bution given by equation 10.

(3) The distribution of points for w is obtained
choosing at random, pairs (scalar, unit vec-
tor) and scaling the corresponding unit vec-
tor by the value of the selected scalar. A
vector or a scalar can be chosen once only.
This will result in a distribution in R™ for w
that obeys equation 10.

With the distribution of points produced, nearest
neighbor encoding algorithms can be used to
obtain an N-point vector quantizer of dimension
n. Thus, vector-quantized weights for the neuron
are obtained.

There is no specific rule for quantization of the
bias b. Basically, it is bounded in a set (let us
say b € [~Vamax,Vmax]) and then, uniformly
quantized. Alternatively, it could be quantized in
such a way that its points, when mapped to the
neuron’s output y through the sigmoid function,
with wTz = 0, generate a uniform grid for y.

3. THE DESIGN OF NEUROINTERFACES
USING ADAPTIVE NONLINEAR INVERSE
MODELING

The concept of neurointerface was first developed
by Widrow, et al. (1998) and may be thought of
as an approximation of the system inverse model.
Although such a statement may not be obvious,

in fact, an operator develops with his experience
a set of causal rules that map standard behaviors
into control actions (cognitive model), and this
effect can be achieved by inverse modeling. Thus,
a neurointerface tries to reproduce the actions
of an experienced operator by using the system
inverse model.

The nonlinear inverse modeling approach has been
used for many years having evolved from linear
inverse modeling (Widrow and Walach, 1996).
Basically, the objective is to cancel the plant
nonlinear dynamical effects by using a nonlinear
device that can reproduce an approximate inverse
of the plant. The term “approximate” is employed
to emphasize that, in general, a nonlinear system
does not possess an-inverse. However, despite
some pathological cases that might eventually
exist, the methods of adaptive inverse modeling
can often be applied to obtain acceptable inverse
approximations of nonlinear systems.

The specification and design of a neurointerface
use the fact that a nonlinear plant can be approx-
imated by a neural network model, here repre-
sented by the function f : RP9+t2 — R, of the
form :

Y1 = F(Yks -+ s Yhmpy Wy -+ 5 Uk—g, War) (11)
Yk+1s-++ yYk—pr Uky - -+ s Uk—q € R7 W GRZM

Variables yg, ... , Yp—p, Uk, - - - ,Uk—q are the plant
model inputs. Y.y is the plant model output and
Wi represents the vector quantized weights of all
the neurons of the plant model.

The neurointerface can be regarded as a neural
network approximation of the plant inverse model.
a simple means for adapting a filter to be the
inverse of a linear plant is shown in figure 1.

pak

Adaptive
Filter

Fig. 1. Inverse modeling of a linear plant.

The first step in a nonlinear neurointerface design
is to obtain a neural network model for the plant
as defined in equation 11 and then, use it to ob-
tain a neural approximation for the plant inverse
(neurointerface). The neural model can be trained
with a set of input-output data either acquired

from the real plant or obtained from the plant

mathematical model (if available).

The final step, shown in figure 2, is to train the
neurointerface to compute an approximate inverse
for the obtained plant neural model. Like the

Training Input
Tk
Te-1}
l’k-q+1= Uk-g+1)
o
g :
= Ug R Vi,
§ » o, '.()
s ’ ér
5
Yi:2 e

Yrp+1

§
NN
N
x>
S

y

Vi1 -

Genetic
Algorithm

Fig. 2. Training a neurointerface.

—p{Neurointerface

Fig. 3. A cascade of the trained neurointerface and
the plant.

neural model case, the neurointerface computes
a function g : RP+@+1 — R, of the form

ug = g(Uk—1,- -, Uk—Q,Tks - - , TP, W) (12)
Uky» oo sUk—QsThy+++ sTk—P € R, Wege Rfc
Variables ug_1,...,U%—Q,7k,... ,7k—p are the

neurointerface inputs. uy is the neurointerface
output and W represents the vector quantized
weights of all the neurons of the neurointerface.

The neurointerface shown in figure 2 is a feedback
system, a recurrent neural network, that is trained
off-line. The training input signal is 7, which
could be a random noise with suitable choice of
spectrum. The plant neural model is nonlinear,
and the neurointerface is trained to be its inverse.
The cascade of the two should be linear. A cascade
of the neurointerface driving the actual plant is
shown in figure 3. The weights of the neuroin-
terface are represented by elements of the VQ
codebook, and are trained by a genetic algorithm.

An adaptive linear control scheme is shown
in figure 4. It is based on an adaptive in-
verse control technique described by Widrow and

L

On-line Process Disturbance

Ke + Neuro- +
—p ;f al > 5
:‘\ Copy| | +X linterface
Command X
Input Cgscade X+

————> Linear D
Model
(a) X error
Q
Copy
Off-line Process error
Cascade []
noise .| Linear - K
Model | | © [XK,
Co
Py 7 |
® II_{eference
Model
Off-line Process error
Cascade .
noise; »| Linear 0 e
Model X+
Coj

Fig. 4. An adaptive inverse control system with
a neurointerface: (a) the entire system; (b)
off-line controller adaptation; (c) off-line dis-
turbance canceller adaptation.

Walach (1996). In this scheme, an equivalent lin-
ear model for the cascade of the neurointerface
and the nonlinear plant is identified in real time.
Then, using a digital copy of this cascade linear
model, the controller C and the disturbance can-
celer Q are calculated off-line. The off-line pro-
cesses can run much faster than real time, so that
as the cascade linear model is identified, Q and C
are immediately obtained.

The neurointerface is able to cancel most of the
nonlinear effects the plant may have and indeed,
it can be used in combination with adaptive linear
control schemes for the control of nonlinear plants.

4. EXPERIMENTAL RESULTS: TRAINING A
NEUROINTERFACE WITH GA

Backing a truck and trailer along a path is a diffi-
cult task for all but the most skilled truck drivers.
This section briefly presents the experimental re-
sults of a neurointerface, trained with GA, that
reduces the trailer truck operation exercise to a
much less complex problem. A scaled model truck

\

Trailer

Fig.‘5. The steering angle, 6, and the angle
between truck and trailer, 6.

connected in a single-trailer configuration (see last
page picture) is utilized as a case study. The
length of the truck is 0.4 m and the length of
the trailer is 0.78 m.

The neurointerface may be considered as a black
box that takes commands from the driver (desired
direction of the trailer back part) and provides the

_ necessary actions (steer the front wheels) in order

to achieve such a goal. The desired direction of the
trailer back part is related to the angle between
truck and trailer, 85, and the front wheel steering
angle, 61 (see figure 5).

The neurointerface has, as its inputs, the truck
speed, the desired value of 65, and the previous
value of the neurointerface’s output, 6.

The neurointerface was designed following the
steps described in section 3. Acquired data from
the scaled model truck were used to obtain a
neural mode that was used for the neurointerface
training.

The neurointerface alone could have been used
with human input to control the nonlinear plant
in the manner illustrated in figure 3 if it were
not for plant disturbance. To deal with dynamic
control and plant disturbance simultaneously and
independently, the system of figure 4 (a) was em-
ployed. In it, an adaptive filter was trained to
model the cascade of the neurointerface and the
nonlinear plant. Another adaptive filter, Q, was
trained for disturbance cancelling, as diagrammed
in figure 4 (c). For model reference control, an-
other adaptive filter, C, is trained as shown in
figure 4 (b) and it is utilized as in figure 4 (a)
to provide an overall dynamic response in accord
with a designer-chosen reference model shown in
figure 4 (b). This system was successfully used
for steering the physical scaled model truck and
trailer going backwards.

Good results were obtained training the neural
model with 3 layers: 7 neurons in the first layer,
7 neurons in the second and 1 linear neuron in
the last layer. The neurons were vector quantized
following the steps described in section 2. Each
neuron has its weight vector quantized to 10
bits (codebook with 1024 values). The bias was
uniformly quantized using a 5-bit scalar quantizer.
The neurons were quantized using 15-bit words.

Desired 6,

[T
~

0 5 sec 10 . 15

Fig. 6. Experimental results: desired behavior of
05, real behavior of 62, and neurointerface’s
steering output, ;.

To run the GA, simple reproduction, crossover
and mutation operations were employed, see
(Kosa, 1992). A fixed population size of 50 in-
dividuals was used and the maximum number of
generations was 200. The same network configu-
ration used for the neural model had been used in
the neurointerface.

The experimental results are shown in figure 6.
They correspond to sequences of data acquired
from the model truck moving backwards on an
average speed of 0.5 m/s. The direction over time
of the truck and trailer came very close to the
desired direction.

5. CONCLUSIONS

This article presents a new approach for the quan-
tization of the weights of a neuron using Vector
Quantization. It shows how Genetic Algorithms
(GA) and Vector Quantization (VQ) can be ap-
plied to the training of neurointerfaces. The GA in
combination with the proposed vector-quantized
neuron are used to train a neurointerface that
helps a human operator back up a scale model
truck with a single trailer.

This is an introductory work and a great effort
will be needed to improve the utilization of vector-
quantized neurons in combination with GA for the
training of neurointerfaces. However, the general
aspects covered in this paper combined with the
excellent quality of the experimental results lead
one to conclude that the full utilization of this
approach for neural network training will be very
useful in the future.

6. REFERENCES

David, J. M. and L. Davis (1989). Training feed-
forward neural neworks using genetic algo-
rithms. In: Proceedings of the International
Joint Conference on Artificial Intelligence
(Morgan Kaufmann, Ed.).

Gersho, A. and R. Gray (1992). Vector Quanti-
zation and Signal Compression. Kluwer Aca-
demic Publishers.

Holland, J. H. (1975). Adaptation in Natural and
Artificial Systems. Ann Arbor, MI: University
of Michigan Press.

Kosa, J. (1992). Genetic Programming: On the
Programming of Computers by Means of Nat-
ural Selection. A Bradford Book, MIT Press.
Cambridge, MA.

Rumelhart, D. E., G. E. Hinton and R. J.
Williams (1986). Learning Internal Represen-
tations by Error Propagation. Parallel Dis-
tributed Processing. Chap. 8. Vol. 1. MIT
Press. Cambridge, MA.

Widrow, B. and E. Walach (1996). Adaptive In-
verse Control. Prentice Hall PTR. Upper Sad-
dle River, NJ.

Widrow, B., E. P. Ferreira and M. M. Lamego
(1998). Neurointerfaces for human-machine
real time interaction. In: Proceedings of the
IFAC Workshop for Real Time Algorithms.
‘Cancun, Mexico. pp. 131-136.

f <
p—

