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AbslrabTwo gradient descent adaptive algorithms are compared, the 
LMS algorithm and the LMSNewton algorithm. LMS is simple and prac- 
tical, and is used in many applications worldwide. LMWewton is based 
on Newton's method and the LMS algorithm. LMSiNewton is optimal in 
the least squares sense. It maximizes the quality of its adaptive solution 
while minimizing the use of training dah. No other linear least squares 
algorithm can give better performance. 

LMS is easily implemented, but LMWewton, although of great math- 
ematical interesr cannot be implemented in most practical applications. 
Because of its optimality, LMWewton serves as a benchmark for all least 
squares adaptive algorithms. The performances of LMS and LMSmewton 
are compared, and it is found that under many circumstances, both algo. 
rithms provide equal performance. For example, when both algorithms 
are tested with statistically nonstationary input signals, their average per. 
formances are equal. When adapting with shtionary input signals and 
with random initial conditions, their respective learning times are an av- 
erage equal. However, under worst.case initial conditions, the learning 
time of LMS can be much greater than that of LMSmewton, and this is 
the principal disadvantage of the LMS algorithm. But the strong points 
of LMS are ease of implementation and optimal performance under im- 
portant practical conditions. For these reasons, the LMS algorithm has 
enjoyed very widespread application. 

I .  INTRODUCTION 

EARNING systems take on many forms. Of special inter- L est here are the adaptive linear combiner of Fig. I and the 
adaptive transversal filter of Fig. 2. The linear combiner is the 
basic building block of almost all neural networks and adap- 
tive filters. The linear combiner and the adaptive filter have 
found vely wide application in practice [1]-[6]. For example, 
the present-day Internet would not exist without adaptive filters 
in every modem. 

A learning system is generally characterized as an operator 
on signals, images, sounds, etc. that has adjustable parame- 
ters and that has a mechanism, an adaptive algorithm, for au- 
tomatically adjusting the parameters in order to optimize the 
operator's performance. The adjustable parameters in Figs. 1 
and 2 are adjustable weights, indicated by circles with arrows 
through them. The input signals are stochastic, and informa- 
tion obtained from the inputs is used by the adaptive algorithm 
to adjust the weights. The algorithm is thus a consumer of 
data. An efficient algorithm minimizes the usage of data while 
maximizing the quality of the solution, i.e. achieving parame- 
ter adjustments close to optimum. Minimizing data usage and 
maximizing solution quality are antagonistic. Minimizing data 
usage corresponds to fast adaptive convergence. But fast con- 
vergencecould provide a poor quality of solution. This tradeoff 

is present in all learning systems. 

11. THE LMS A N D  LMS~NEWTON ALGORITHMS 

When referring to the linear combiner of Fig. I ,  the set of 
weights is designated by the weight vector 

and the set of input signals to the weights is the input vectoi 

The output signal Y k  is the inner product of x k  and W k :  

(3) T 
Y k  X k  W k  = W g X k .  

The subscripts k are a time index. 
The desired response d k  is an input training signal that is ob- 

tained in practice from the physical context of the application. 
Many examples of how desired responses may be obtained are 
shown in [l] for a variety of practical applications, such as pre- 
diction, noise cancelling, sensor array processing, and so forth. 
The error signal in Fig. I is L k ,  the difference between the de- 
sired response and the actual output signal: 

€ k = d k - y k .  (4) 

Certain statistical properties of the inputs to the linear com- 
biner are of importance. Assuming that the input and the de- 
sired response are stationary, the input autocorrelation matrix, 
designated by R, is defined as 

and the crosscorrelation vector between the input X k  and the 
desired response d k  is defined as 
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Fig. 2. Adaptive transversal digital filter. 
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Fig. 3. Sample MSE far a two-weight system 

by setting the gradient to zero: 

w* = R-'p. (9) 

This weight vector is the best linear least squares solution and 
is commonly known as the Wiener solution. 

The Wiener solution is of great theoretical interest, but it can- 
not be used directly in many practical circumstances because 
one would not know the statistics R and p .  Input data sam- 
ples are available, and they can be used on an iterative basis as 
they arrive for the adjustment or adaptation of the weights. The 
weight adjustment process that is the simplest and most widely 
used in the world today is the Widrow-Hoff LMS algorithm, 
derived in 1959 [7]. This algorithm is based on the method of 
steepest descent, using instantaneous gradients. It is interesting 
to note that the backpropagation algorithm of Werbos [XI  also 
utilizes the method of steepest descent using instantaneous gra- 

The MSE is thus a quadratic function of the weights. If there 
were only two weights, the MSE could be Plotted as in Fig. 3. 
With many weights, the surface, known as the performancesur- 
face, is a hyperparaboloid. The gradient of this surface, is a 
vector obtained by differentiation of Eq. (7): 

The next weight vector, w ~ + ~ ,  equals the present weight vec- 
tor, wk,  PIUS a change which is proportional to the negative 
gradient. The proportionality constant is p, and this is a design 
parameter that controls stability and rate of convergence. The 
LMS algorithm is obtained from Eqs. (10) and (4) as 

( 1 1 )  
w k + l  = W k + 2 W k X k ,  

T t k  = d k  - Xk W k .  V =  A [ 3L F] = - 2 p + 2 R w .  (8) { 
aw, The gradient for each iteration is instantaneous and is given by 

-2€k%k,  as shown in [l] .  Assuming R is not singular, the optimal solulion w* is found 
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When using steepest descent to find the minimum of a 
quadratic function of the weights, the weights progress geo- 
metrically toward the Wiener solution. In fact, each weight 
converges toward its Wiener value with a progression that is a 
sum of geometric progressions. Each of the geometric progres- 
sions has an individual "time constant'' (the unit of time is the 
iteration cycle). It has been shown [I]  that there are as many 
distinct timeconstants as there aredistinct eigenvaluesof the R 
matrix. These time constants depend on the eigenvalues of R 
and correspond to natural modes of the adaptive algorithm. The 
relative amplitudes of the modes are different from one weight 
to another and depend on the initial conditions of the weight 
vector, i.e. its initial setting. 

Since one rarely has a priori knowledge of the orientation of 
the initial weight vector setting with respect to the eigenvectors 
of the R matrix, i t  is difficult to predict these time constants 
and therefore difficult to predict the rate of convergence of the 
LMS algorithm. In spite of this drawback, LMS is very widely 
used. 

A more predictable algorithm is Newton's method. Assum- 
ing that R is not singular, i t  can be written as 

Here, the negative gradient is premultiplied by p A a v t K 1 ,  
where A,,, is the average of the eigenvalues of R. Based 
on Eq. (12) and using the instantaneous gradient - 2 E k i k .  the 
LMSA'ewton algorithm can be written as 

With Newton's method, there is only one natural mode, corre- 
sponding to one time constant that is independent of the weight 
vector's initial conditions. It is interesting to note that Eq. (13) 
is identical to Eq. (11) when all of the eigenvalues of R are 
equal. 

So, the good news about LMSNewton is that its rate of con- 
vergence is predictable and does not depend on initial condi- 
tions. The bad news is that one cannot implement this algo- 
rithm in practice because R-' is generally unknown. LMS, 
based on steepest descent, has disadvantages, but i t  is simple 
and easy to implement. Also, as will be shown, i t  performs 
equivalently to LMS/Newton under many important conditions. 

111. LEARNING WITH A FINITE SET OF DATA SAMPLES 

The LMSINewton algorithm is not only very predictable in 
its convergence behavior, but i t  is also highly efficient in its use 
of input data. It will be shown that in the least squares sense, 
no other algorithm can be more efficient in its data usage than 
LMSINewton. 

In order to study the question of efficiency for the LMSINew- 
ton algorithm, it  is useful to contemplate training the linear 
combiner with a finite number of data samples. One data sam- 
ple consists of an x vector and its associated desired response. 

Assume that a set of N training input samples and associated 
desired responses is drawn from a given distribution. Define a 
matrix X for these training samples as the set of N x vectors: 

(14) 
A T X =  [ X I  1 2  ... IN] 

Define a desired response vector for these samples as 

Define an error vector for these samples as 

The objective is to find a set of weights that will minimize 
the sum of the squares of the errors for the training sample, 
i.e. minimize Assuming X is full rank, one obtains the 
optimal least squares solution as [I], [9] 

One could directly calculate this solution from the data, or the 
same result could be obtained by training the weights with the 
LMS algorithm or any other least squares algorithm, recirculat- 
ing the training data over and over until the weights converge 
and stabilize. It should be noted that if the number N were 
increased without bound, the finite least squares solution of 
Eq. (17) would converge in the mean-square sense to the true 
Wiener solution for the given distribution of training samples 
and desired responses. 

In practice, one would have only a finite number of data 
samples available for training. The question is, given N train- 
ing samples, how well does the optimal solution of Eq. (17) 
perform compared to the Wiener solution when operating on 
an infinite set of samples drawn from the same distribution? 
The true Wiener solution yields the minimum MSE. The least 
squares solution based on N training samples produces more 
MSE than the true Wiener solution. There is an excess MSE. If 
a different set of N data samples were randomly selected from 
the same distribution, a different optimal solution (17) would 
result, with a different excess MSE. Given an ensemble of ran- 
domly selected data sets, each with N samples of data, there 
would be an ensemble of optimal solutions (17) with an en- 
semble of excess MSEs. One could take an ensemble average 
of the excess MSEs and normalize with respect to the minimum 
MSE of the true Wiener solution. This dimensionless ratio is 
called the misadjustment due to training with N data samples: 

a (average excess MSE) 
(minimum MSE) 

- (number of weights) 

M =  

(18) 

A derivation of this result is given in [IO] and [ I l l .  It was 
first reported by Widrow and Hoff at a WESCON conference 

n - - - - 
(number of training samples) N' 
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in 1960 [7]. Years of experience with adaptive filters and neu- 
ral networks lead one to accept a misadjustment of 10% as a 
reasonable design value. This gives a performance that is only 
10% worse than that of the optimal Wiener solution. When 
training a linear combiner, a 10% misadjustment is obtained 
when the number of training samples is equal to 10 times the 
number of weights. When training a neural network having 
only one neuron, the number of training patterns would be 
equal to I O  times the number of weights. When training an 
adaptive filter with a steady flow of stationary input data, the 
parameter p should be chosen so that the training time or con- 
vergence time (several time constants of the learning curve) 
would be equal to 10 times the length of its impulse response in 
order to have a misadjustment of 10%. There is no similar law 
for multilayered neural networks trained with backpropagation, 
but one may speculate that for a network with many inputs and 
a single output, regardless of the number of neurons and layers, 
training with a number of patterns equal to 10 times the number 
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Fig. 4. Sample leaning e w e  wiul gradient noise. 

of inputs should give good performance. , 

is 

n 
M = p T r ( R )  = - Iv. L E A R N I N G  WITH LMS~NEWTON 

4TMSE ’ Consider the linear combiner, with stationary input data 
flowing in real time. Starting from an initial (non-optimal) 
weight vector and adapting with the LMSlNewton algorithm, 
the weight vector will geometrically (exponentially) relax to- 
ward the Wiener solution, with noise superposed. The noise 
originates from adapting with instantaneous gradients. (Esti- 
mating the gradient with a single data sample produces a noisy 
gradient.) As the weights relax toward the Wiener solution, the 
MSE also relaxes exponentially toward the level of the mini- 
mum mean square error &, with noise superposed. Because 
of gradient noise, the weights do not converge on the Wiener 
solution, but undergo Brownian motion about it. The MSE is 
almost always greater than <,,,in and never goes below it, be- 
cause of the noise in the weights while adapting. A plot of 
MSE versus number of iterations is shown in Fig. 4, where Ea. 
is the asymptotic MSE, and &,,, is the difference between it 
and the minimum MSE <min. This type of plot is called the 
“learning curve”. Note that, in general, &xcess > 0 because the 
misadjustment is not zero, and thus, the asymptotic MSE <fin is 
greater than &,in. which is reflected in Fig. 4. 

After gross adaptive transients have died out (after about 
four exponential time constants), the weights are in a steady 
state Brownian motion and the MSE hovers randomly above 
Emin. exhibiting “excess mean square error”. The misadjust- 
men1 for this situation is defined as the average of the excess 
mean square error divided by &,in: 

n (average excess MSE) 
M =  (19) 

The bigger one makes p, the faster the algorithm converges, 
and the greater is the misadjustment. It has been shown 
[121, [I] ,  [111 that a good approximation for the misadjustment 

(minimum MSE) ’ 

where Tr(R) is the trace of R, and TMSE is the time constant 
of the mean square error leaming curve. The unit of time is 
the iteration cycle. Time is marked by number of iteration cy- 
cles, and since a new input training sample is used with each 
iteration cycle, time can equivalently be marked by number of 
training samples used. 

V. OPTIMALITY OF LMS~NEWTON IN A STATIONARY 
ENVIRONMENT 

The LMS/Newton algorithm exponentially weights its input 
data over time as it establishes its weight values. The set- 
tling time of the adaptive process is of the order of four time 
constants of the MSE leaming curve. At any moment, the 
weights are determined by adaptation that has taken place over 
essentially the last four time constants worth of data. Thus, 
in a steady flow situation, the training data “consumed” or 
“absorbed” at any time by the LMS/Newton algorithm is es- 
sentially comprised of the most recent 4‘rMSE samples. From 
Eq. (ZO), the misadjustment of the LMS/Newton algorithm can 
therefore be expressed as 

n (number of weights) M = - -  - 
4TMSE (number of independent training samples)’ 

(21) 

When leaming with a finite set of data samples, the optimal 
weight vector is the best least squares solution for that set of 
samples, and it is often called the “exact least squares solu- 
tion”. This solution, given by Eq. (17), makes the best use of 
the finite number of data samples, in the least squares sense. 
All of the data are weighted equally in affecting the solution. 
This solution will of course vary from one set of samples to 
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another, and i t  has a misadjustment of 

(22) 
(number of weights) 

(number of independent training samples) ’ 
M =  

For the same consumption of data, it is apparent that 
LMSNewton and exact least squares yield the same misad- 
justment. Although we are comparing “apples with oranges” 
by comparing a steady flow algorithm with an algorithm that 
learns with a tinite number of data samples, we nevertheless 
tind that LMS/Newton is as efficient as exact least squares 
when we relate the quality of the weight-vector solution to 
the amount of data used in obtaining it. Since the exact 
least squares solution makes optimal use of the data, so does 
LMSNewton. 

VI. T R A N S I E N T  LEARNING WITH STATIONARY INPUT 
DATA 

The LMSNewton algorithm makes optimal use of its train- 
ing data. Its learning curve is exponential with a single time 
constant. For practical purposes, its convergence time is of the 
order of four time constants. although in principle, convergence 
would take forever. Fast convergence is desirable because, dur- 
ing the initial learning transient, the MSE is excessive. The 
LMS algorithm has a learning curve which is a sum of ex- 
ponentials. But, when all of the eigenvalues of the R matrix 
are equal, LMS has a single exponential learning curve that is 
identical to that of LMSNewton; and LMS is therefore opti- 
mal. Generally, the eigenvalues are not equal, and LMS has a 
different kind of learning curve than LMSNewton. 

After learning transients die out, the steady state misadjust- 
ment for LMS/Newton is 

and the steady state misadjustment for LMS is 

The derivations of Eq. (23) and Eq. (24) are given in [I]  and 
[ 1 I]. A fair and reasonable way to compare two algorithms 
is to adjust their rates of convergence so that they would have 
the same steady state misadjustment. One could always make 
an algorithm ‘‘look good” with fast adaptation, but this causes 
excessive misadjustment. To compare LMS with LMSNew- 
ton, their p-parameters should be set to the same value. 

Fig. 5 shows plan views of a quadratic MSE surface, Fig. 5(a) 
indicating adaptive steps for Newton’s method and Fig. 5(b) 
showing corresponding steps for the method of steepest descent 
with equivalent initial conditions. These steps correspond to 
three adaptive transient experiments, each starting from a dif- 
ferent point on the same contour of constant MSE and operating 
with the same value of p. The steps using Newton’s method 
are always directed toward the bottom of the quadratic bowl, 
whereas those of steepest descent follow the local gradient, or- 
thogonal to the contours of constant MSE. 

~ 

I , 
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Fig. 5 .  Illustration of Newton’s method versus steepest descent: (a) Newton’s 
method. (h) steepest descent. The Wiener solutioo is indicated by *. The three 
initial conditions are indicated by 0. 

Fig. 6 shows learning curves corresponding to the adaptive 
steps illustrated in Fig. 5. All three learning curves derived 
from Newton’s method are identical, since the initial starting 
conditions are located on the same constant MSE contour, and 
all three time constants are the same. Fig. 6 shows all three 
learning curves as a single curve labeled “Newton’s method”. 
The three steepest descent curves are distinct, having individual 
time constants. The curves corresponding to initial conditions 
falling on an eigenvector (a principal axis of the elliptical con- 
tours) are pure exponentials, whereas the curve corresponding 
to the initial condition between the eigenvectors is a sum of two 
exponentials. 

Which algorithm converges faster? For some initial condi- 
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(4 Fig. 6.  Steepest descent and Newlon’s method leaming curves. 

tions, LMS converges faster than LMS/Newton. For other ini- 
tial conditions, LMS is slower than LMS/Newton. Yet for other 
initial conditions, LMS has multiple modes, some faster than 
LMSINewton and some slower than it. The question is: which 
is faster, LMS or LMSNewton? 

VII. EXCESS ERROR ENERGY 

The question “which is faster” prompts a new look at the 
learning curve and at the issue of learning time. Regarding the 
leaming curves of Fig. 7, it is clear that during the transient, 
the MSE is excessive. One strives to reduce this MSE to &in as 
fast as possible. The area under the curve and above C., the 
shaded area, is defined as the excess error energy. This area is a 
sum of MSE over time. One would like this area to be as small 
as possible. 

The learning curve shown in Fig. 7(a) is an exponential hav- ihi 
ing a single time constant. The area under this curve, the ex- 
cess error energy, is equal to the amplitude of the exponential 
(its initial excess MSE) multiplied by the time constant. The 
learning time for this curve may be considered to be four time 
constants. This is somewhat arbitrary, but reasonable. Accord- 
ingly, the learning time for the single exponential is defined as 

learning a (excess error energy) ( time ) = 4 x  (initial excess MSE) . (25)  

The learning curve shown in Fig. 7(b) is a sum of two expo- 
nentials. Its excess error energy is the same as that of the single 
exponential learning curve of Fig. 7(a), and the initial excess 
MSE of both curves is the same. The learning times of both 
curves are therefore the same and are both given by Eq. (25). 
In general, the learning time of a learning curve which is a sum 
of any number of exponentials will be defined hereby as given 
by Eq. (25). Starting from the same initial MSE, the conver- 
gence times of two different learning curves are defined as be- 
ing identical if their respective excess error energies are equal. 

Excess error energy is proportional to learning time as it is de- 
fined here. 

The question remains, which has the greater learning time, 
LMS or LMSNewton? Referring to Fig. 6, one can see that 
LMSNewton has a fixed learning time, but the learning time of 
LMS depends on initial conditions. Sometimes LMS is faster 
than LMSINewton, sometimes slower. Under worst-case ini- 
tial conditions, LMS can have a much greater learning time 
than LMSNewton. However, it has been shown [ l l ]  that 
with random initial conditions, the average learning time with 
LMS is identical to the unique learning time of LMSNewton. 
LMSiNewton is optimal and its performance is the benchmark. 
It is important to realize that the average performance of LMS 
is identical to that of LMS/Newton, when comparing both al- 
gorithms starting from the same randomly chosen initial con- 



ditions. One must be careful to note that this does not mean 
that the learning curves of LMS and LMSfNewton are identi- 
cal, even when averaged over initial conditions. On the con- 
trary, it can be shown that the average initial convergence of 
LMS is faster than that of LMSNewton, whereas the average 
final convergence of LMS is slower than that of LMSfNewton 
[ 111. However, their average learning times and average excess 
error energies are the same. 

VIII. LMS A N D  L M S ~ N E W T O N  I N  A NONSTATIONARY 
ENVIRONMENT 

With statistically stationary inputs, the quadratic perfor- 
mance surface is fixed, and the Wiener solution is fixed. With 
nonstationary inputs, this surface changes randomly, and the 
Wiener solution is not fixed but is a randomly moving target. 
There is an analogy between, on the one hand, transient adap- 
tation from random initial conditions toward a fixed Wiener 
target and, on the other hand, steady state adaptation toward 
a randomly moving Wiener target. In this section, a compar- 
ison is made of the performances of the LMS algorithm and 
the LMSfNewton algorithm when adapting with nonstationary 
inputs of a simple form. 

Filtering nonstationary signals is a major area of application 
for adaptive systems. When the statistical character of an input 
signal changes gradually, randomly, and unpredictably, a fil- 
tering system that can automatically optimize its input-output 
response in accord with the requirements of the input signal 
could yield superior performance relative to that of a fixed, non- 
adaptive system. The performance of the conventional steepest 
descent LMS algorithm is compared here with LMSNewton 
(which, as demonstrated above, possesses optimality qualities), 
when both algorithms are used to adapt transversal filters with 
nonstationary inputs. The nonstationary situations to be studied 
are highly simplified, but they retain the essence of the problem 
that is common to more complicated and realistic situations. 

The example considered here involves modeling or identi- 
fying an unknown time-varying system by an adaptive LMS 
transversal filter of length n. The unknown system is assumed 
to be a transversal filter of the same length n whose weights 
(impulse response values) vary as  independent stationary er- 
godic first-order Markov processes. as indicated in Fig. 8. The 
input signal Z k  is assumed to be stationary and ergodic. Ad- 
ditive output noise, assumed to be stationary and ergodic, of 
mean zero and of variance &,in. prevents a perfect match be- 
tween the unknown system and the adaptive system. The min- 
imum MSE is, therefore, &,in. and i t  is achieved whenever the 
weights of the adaptive filter, wk. match those of the unknown 
system. The latter are at every instant the optimal values for the 
corresponding weights of the adaptive filter and are designated 
as U;. the time index indicating that the unknown “target” to 
be tracked is time-varying. 

The components of wi; are generated by passing indepen- 
dent white noises of variance U’ through identical one-pole 
low-pass filters. The components of wi; therefore vary as in- 

~ 
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additive white noise, 
.variance = tmi. 

uncorrelated 
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Fig. 8. Modeling an unknown time-varying system. 

dependent first-order Markov processes. The formation of w; 
is illustrated in Figs. 8 and 9. 

According to the scheme of Fig. 8, minimizing the MSE 
causes the adaptive weight vector W k  to  attempt’to best match 
the unknown w; on a continual basis. The R matrix, depen- 
dent only on the statistics of Z k ,  is constant even as w;  varies. 
The desired response of the adaptive filter, dk,  is nonstation- 
ary. being the output of a time-varying system. The minimum 
MSE, <hnS is constant. Thus the MSE function, a quadratic 
bowl, varies in position while its eigenvalues, eigenvectors, and 
(hn remain constant. 

In order to study this form of nonstationary adaptation both 
analytically and by computer simulation, a model comprising 
an ensemble of nonstationary adaptive processes has been de- 
fined and constructed as illustrated in Fig. 9. Throughout the 
ensemble, the unknown filters to be modeled are all identical 
and have the same time-varying weight vector W E .  Each en- 
semble member has its own independent input signal going to 
both the unknown system and the corresponding adaptive sys- 
tem. The effect of output noise in the unknown systems is ob- 
tained by the addition of independent noises of variance < ~ ” .  
All of the adaptive filters are assumed to start with the same 
initial weight vector W O ;  each develops its own weight vector 
over time in attempting to pursue the moving Markovian target 

For a given adaptive filter, the weight-vector tracking error 
U ; .  

n at the kth instant is uk = wk - W E .  This error is due to both 
the effects of gradient noise and weight-vector lag and may be 
expressed as 

The expectations are averages over the ensemble. Eq. (26)  
identifies the two components of the error. Any difference be- 
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Fig. 9. An ensemble of nonslarionary adaptive processes 

+ E [ ( E [ w k ]  - ~ ; ) ~ R ( E [ w k ] - w ; ) ]  

+ 2E [(WL - E [ w ~ ] ) ~ R ( E [ w ~ ]  -WE)]. 
(28) 

Expanding the last term of Eq. (28) and simplifying since w; 
is constant over the ensemble, 

2E [wZRE[wk] - w ~ R w ;  - E[wkJTRE[wb] 

+ E[wklTRw;] = 2 ( E [ W k ] T R E [ W k ]  - E [ W k ] T R E [ W k ]  

- E I W k J T R ~ ;  +E[wkJTRw;) = 0. (29) 

Therefore, Eq. (28) becomes 

( average ) = E [(w; - E [ ~ k ] ) ~ R ( w k  - E[wb] ) ]  
excessMSE 

+E[(E[~kl-- ; )~R(E[wkl  -WE)]. 
(30) 

The average excess MSE is thus a sum of components due to 
both gradient noise and lag: 

= E [(w; - E [ w ; ] ) ~ A ( w ;  - E[w;])], 
(32) 

where w; = QTwk, w'; 5 QTw;, A is a diagonal matrix of 
the eieenvalues of R, and Q is the modal matrix of R. The 

a 

L 

total misadjustment is therefore a sum of two components, that 
due to lag and that due to gradient noise. These components of 
misadjustment have been evaluated by Widrow ef. d. [lo]. The 
total misadjustment for adaptation with the LMS algorithm is 

tween the ensemble mean of the adaptive weight vectors and 
the target value w; is due to lag in the adaptive process, while 
the deviation of the individual adaptive weight vectors about 
the ensemble mean is due to eradient noise. - 

(33)  

misadjustment 
due to lag 

misadjustment 
due to gradient noise 

nu2 

MSum = Weight-vector error causes an excess MSE. The ensemble 
average excess MSE at the kth instant is 

= p n ( R )  + _ _ .  
4&in 

Since M,,, is convex in p, an optimal choice of p that mini- 
mizes M,,, can be obtained by differentiating M,,, with re- 

- w;)T R ( W k  ~ w;)] ' (27) spect to p and setting the derivative to zero. Optimization takes excessMSE 
= E 
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place when the two terms of Eq. (33)  are made equal. When 
this happens, the loss in performance from adapting too rapidly 
(due to gradient noise) is equal to the loss in performance from 
adapting too slowly (due to lag). 

I t  is interesting to note that MSu, in Eq. (33) depends on the 
choice of the parameter p and on the statistical properties of the 
nonstationary environment but does not depend on the spread 
of the eigenvalues of the R matrix. It is no surprise, therefore, 
that when the components of misadjustment are evaluated for 
the LMSNewton algorithm operating in the very same envi- 
ronment, the expression for M,,, for LMSNewton turns out 
to be 

misadjustment >+(  due to lag 
misadjustment 

due to gradient noise Msum = 

(34) 

which is the same as Eq. (33). From this we may conclude 
that the performance of the LMS algorithm is equivalent to that 
of the LMSNewton algorithm when both are operating with 
the same choice of p in the same nonstationary environment, 
wherein they are tracking a first-order Markov target. The opti- 
mum value of p is the same for LMSNewton as for LMS. Since 
LMSNewton is optimal, we may conclude that the LMS algo- 
rithm is also optimal when operating in a first-order Markov 
nonstationary environment. And it is likely optimal or close to 
it when operating in many other types of nonstationary envi- 
ronments, although this has not yet been proven. 

IX. CONCLUSION 
An adaptive algorithm is like an engine whose fuel is input 

data. Two algorithms adapting the same number of weights 
and operating with the same misadjustment can be compared 
in terms of their consumption of data. The more efficient algo- 
rithm consumes less data, i.e. converges faster. On this basis, 
the LMSNewton algorithm has the highest statistical efficiency 
that can be obtained. The LMSNewton algorithm therefore can 
serve as a benchmark for statistical efficiency against which all 
other algorithms can be compared. 

The role played by LMSNewton in adaptive systems is anal- 
ogous to that played by the Camot engine in thermodynamics. 
They both do not exist physically. But their performances limit 
the performances of all practical systems, adaptive and thermo- 
dynamic, respectively. 

The LMSNewton algorithm uses learning data most effi- 
ciently. No other learning algorithm can be more efficient. The 
LMS algorithm performs identically to LMSNewton when all 
eigenvalues of the input autocorrelarion matrix (the R matrix) 
are equal. In most practical cases, however, the eigenvalues 
are not equal. Regardless of eigenvalue spread, the LMS al- 
gorithm performs equivalently, on average, to LMSNewton in 
nonstationary environments and under transient learning con- 
ditions with random initial conditions. However, under "worst 
case" initial conditions, LMS can converge much more slowly 

than LMSNewton. Under "best case" initial conditions, LMS 
converges much faster than LMSNewton. On average, their 
convergence rates are equivalent in terms of their excess er- 
ror energies. Along with its simplicity, ease of implementa- 
tion, and robustness, the equivalent performance between LMS 
and LMSNewton is one of the major reasons for the popular- 
ity of the LhlS algorithm. Dr. Widrow has discussed this with 
Dr. Paul Werbos, and both conclude that the backpropagation 
algorithm is popular for similar reasons. 
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