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is obtained. The  analogy  of (3) is that  the matrix S is not stochastic 
but is an array  of known complex numbers. Differentiation with 
respect to variables multiplied by elements of this matrix is completely 
valid.  Morgera’s (2) is valid.  However, in this equation, S is not a vari- 
able, so that 

- In [det (S)] = 0 
a 

adi 
(5 1 

and  my (7) follows. 
Morgera’s statement that his (2) is obtained if and only if the ele- 

ments of the eigenspectrum are distinct is a mystery to me. It may be 
that he  means that the circumstance that  the extremum is obtained 
when all di are equal negates the applicability of partial differentiation. 
If this is what is meant, this is clearly erroneous. As  an example, the 
function 

P 
Q = (zi - 1)2 

i= 1 

attains the minimum  value of zero for each zi  = 1. The correct solution 
is easily found by computing 3Qla.q;  i = 1, 2, . P and setting each 
partial equal to zero. 

The last major point of  Morgera’s communication is the lack of  rigor 
in progressing from (7) to (8). The validity of the diagonalizability of 
A by a similarity transformation is based upon recognizing that  for this 
problem there is a unique ML estimator of the covariance matrix. Note 
that when A is diagonalizable, the unique matrix with equal eigenvalues 
is a scalar multiple of the identity matrix. So that  ifA is diagonalizable 
it must equal N times the identity matrix as in (9). KA is not diagonal- 
izable, there is not a unique matrix with the eigenvalues  of N. For this 
situation there is not a unique ML estimator. 
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Adaptive Line Enhancement and Spectrum Analysis 
D. W. TUFTS 

Abrmct-The notim that adaptive filters may estimate ?ad track the 
frequency of a ph.&-modul.ted sin& m noise better thra a spec- 
tnnn analyzer is examined. It is @, using both theoretical and 
experimental results, that spectnun analysis p e r f o m s  better than 
adaptive filitteling. 
In dditioa, tbe method of spec- analysis CIIL be improved for 

arch sppkationa by tbe uae of fxequency4ope processing, or by the 
p w d o n  of a partidly cobereat teference waveform by maximum 
posterior probability estimatica of the p h m  h c t i m .  

Adaptive line enhancement has been proposed as an improved 
method for a) estimating and tracking the frequency of a phase- 
modulated, siuinusoidal signal in noise  and b) deteecting the presence  of 
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such a signal in noise. Widrow et al. and Griffiths argue that adaptive 
filtering may  have better performance than spectrum analysis  in  such 
applications [ 11, [ 21. In this letter I argue that, on the contrary, 
spectrum analysis appears to have  advantages in performance which 
can be demonstrated both theoretically and experimentally. 

Consider the case in which the frequency of the sinusoid is almost 
constant over the delay  range of the adaptive filter. This is the condi- 
tion given by Griffiths for effective operation of the adaptive filter 
[2, p. 214). In Griffiths’ example E [2, p. 2191 in which the fre- 
quency is  varying  sinusoidally with a period of 21 samples, the 
delay  range  of the adaptive filter was taken to be L = 4 samples. We 
assume that no a priori knowledge is available about the form of 
frequency variation. The range within which the frequency lies-which 
could  be the whole Nyquist frequency range-is  assumed to be known. 

Under  these circumstances Viterbi has  derived the maximum-likelihood 
estimate of frequency within each  of the intervals over  which it is 
almost constant [3, ch. lo]. in the presence  of additive Gaussian  noise. 
Let us assume that each  such interval has duration L = 4 samples, as in 
Griffiths’ example. The  maximum-likelihood estimate is obtained by 
spectrum analysis  (SA),  which could be  realized  using the fast Fourier 
transform algorithm (FFT).  However, the size  of the array to be 
transformed would not be 4 samples, but more likely 256 or 512 
samples. That is, the data array must be heavily padded with zeros to 
attain the de+d frequency resolution. 

The frequency resolution is defined in this note to be the accuracy 
of the measurement of the instantaneous frequency (i.e., the derivative 
of the phase function) of a phase-modulated sinusoid. For a m e d  
nonzero  window length over  which the instantaneous frequency is 
almost constant, the frequency resolution of a zerepadded discrete 
Fourier transform OFT) depends on 1) the signal-tenoise ratio (SNR) 
of the input  data, 2) the residual mismatch between the signal  and the 
closest constant-frequency sinusoid, and 3) the number of frequency 
bins which  are formed (and, hence, the amount of zero padding).  If 
there is no noise with the signal, the frequency resolution monotonically 
improves, as more uniformly spaced frequency bins are added over the 
same frequency range, until the residual mismatch of the signal, if any, 
limits the accuracy  of the frequency measurement. 

In practical applications the attainable frequency resolution naturally 
depends on the type and  precision of a priori knowledge of the varia- 
tion of  signal frequency or phase,  and  how that a priori knowledge is 
used in the measurement of frequency. Here, following Griffiths 
[2, p. 2191, we  assume only that the frequency is almost constant over 
the window of nonzero data. 

The spectrum analysis method can  be  improved  by testing a small 
number of frequency-slope bins associated with each center-frequency 
bin. This enables a frequency-coherent reference to be used  over a 
longer  span  of data, because the frequency rate is being matched as 
well as the frequency. Here this is called  sloped spectrum analysis 
(SSA). 

A sinusoidally  varying frequency was simulated with additive noise 
in order to track the frequency by the SA method, based  on  maximum- 
likelihood estimation of frequency and by the SSA method. The 
parameters were  chosen to match those chosen by Griffiths in his 
example E (2, p. 2191. Good tracking of frequency (to an accuracy 
of about 0.005 Hz)  was obtained down to an SNR  of 10 dB. 

Examples of  these experimental results are presented in Tables I, 11, 
and I11 below.  The  same  signal  and  noise  values are used in each  of 
the three cases, but the noise is scaled to obtain the desired  SNR.  Only 
three values  of frequency slope  were  used for the SSA method, namely, 
zero and t0.00374 Hz/s.  These  values  cover the range  of frequency- 
slope  values  of the signat The frequency estimates appear to be more 
accurate than those obtained by adaptive fdtering. 

It is difficult to compare the complexity of the SA method with that 
of adaptive filtering. Although the former was  realized  by a zere 
padded FFT algorithm to obtain the results of Tables I, 11, and 111, 
this is not the most efficient realization. 

Widrow et ul. suggest that  it may  be  possible to detect low-level 
sinusoids in noise more effectively by use of adaptive line enhancement 
[l, pp. 1713-1716. The spectrum analyzer with which they compare 
adaptive fdtering is not allowed to coherently integrate over the full 
set of input samples  over  which the frequency is constant. This would 
improve its performance. 

If a phase-modulated sinusoid is to be detected, then results of detec- 
tion theory can  be  applied [3, ch. 81,  [4, ch. 41. The  modeled  phase 
function, any a priori information, and the  input  data should then be 
used to estimate the phase function [SI,  [6] and form a partiauy 
coherent reference waveform [3, ch. 81. 
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TABLE I11 
FREQUENCY IN Hz 

TABLE I 
FREQUENCY IN Hz 

F ( 0  F(SSA) F(S.4) 

0.2103 0.2113 0.2090 
0.2078 0.2074 0.2070 
0.2046 0.2054 0.2031 
0.2009 0.2015 0.1992 
0.1972 0.1976 0.1953 
0.1937 0.1937 0.1934 
0.1908 0.1917 0.1895 
0.1887 0.1875 0.1875 
0.1876 0.1875 0.1875 
0.1876 0.1875 0.1875 
0.1887 0.1895 0.1895 
0.1908 0.1911 0.1934 
0.1937 0.1930 0.1953 
0.1972 0.1969 0.1992 
0.2009 0.2008 0.2031 
0.2046 0.2047 0.2070 
0.2078 0.2067 0.2090 
0.2103 0.2109 0.2109 
0.2119 0.2129 0.2129 
0.2125 0.2129 0.2129 
0.2119 0.2109 0.2109 

Comparison of input frequency, 
F O ,  frequency estimate using 
sloped spectrum analysis,  F(SSA), 
and frequency estimate using spec- 
trum analysis  F(SA). The signal sam- 
ples are those specified by Griffiths 
[ 2, p. 2191 The number of frequency 
bins over a 1 Hz band is 512. (the 
bin separation is 0.00195 Hz). The 
frequency slope for  the SSA method 
is i0.00374 Hzls. SNR is 70 dB. 

TABLE I1 
FREQUENCY IN Hz 

F( 0 F(SSA) F (SN 

0.2103 
0.2078 
0.2046 
0.2009 
0.1972 
0.1937 
0.1908 
0.1887 
0.1876 
0.1876 
0.1887 
0.1908 
0.1937 
0.1972 
0.2009 
0.2046 
0.2078 
0.2103 
0.21 19 
0.2125 
0.2119 

0.2074 
0.2054 
0.2008 
0.1996 
0.1976 
0.1895 
0.1930 
0.1878 
0.1859 
0.1852 
0.1956 
0.1937 
0.1872 
0.1969 
0.2012 
0.2087 
0.2106 
0.2207 
0.2113 
0.2132 
0.2028 

0.205 1 
0.2031 
0.2031 
0.1973 
0.1953 
0.1895 
0.1953 
0.1855 
0.1855 
0.1875 
0.1934 
0.1914 
0.1895 
0.1992 
0.2012 
0.2109 
0.2129 
0.2207 
0.2090 
0.2129 
0.2051 

Comparison  of  values  of input fre- 
quency and frequency estimates as in 
Table I, except SNR = 20 dB. 

F( r n )  F(SSA)  F(SA) 

0.2103 0.2031 0.2031 
0.2078 0.2035 0.2031 
0.2046 0.2028 0.2031 
0.2009 0.1996 0.1973 
0.1972 0.1973 0.1973 
0.1937 0.1875 0.1875 
0.1908 0.1969 0.1992 
0.1887 0.1859 0.1836 
0.1876 0.1839 0.1836 
0.1876 0.1833 0.1855 
0.1887 0.1996 0.1973 
0.€908 0.1937 0.1914 
0.1937 0.1833 0.1855 
0.1972 0.1969 0.1992 
0.2009 0.2015 0.2012 
0.2046 0.2126 0.2148 
0.2078 0.2126 0.2148 
0.2103 0.2308 0.2285 
0.2119 0.2093 0.2070 
0.2125 0.2 132 0.2129 
0.21 19 0.1989 0.2012 

Comparison  of  values  of input fre- 
quency and frequency estimates as in 
Table I, except SNR = 15 dB. 
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Reply’ by L. J. Griffiths’ 

Tufts’ discussion correctly points out that conventional spectrum 
analysis cau be used to accurately determine the instantaneous b- 
quency of a sinusoid  which is observed in  the presence  of additive white 
noise. The advantage of using adaptive filters for estimating and 
tracking instantaneous frequencies is not  that such filters perform 
better than optimal detectors  for a specific problem. They do  not  
Rather, the advantage lies in  the  fact that adaptive estimators are ex- 
tremely robust. That is, they perform remarkably wen  over a wide 
raage of input signal parameters and statistics with no o priori  knowl- 
edge regardiug the precise nature of these parameters. In addition, the 
performance of the adaptive mter has been shown to be relatively 
insensitive to the two available fjlter parameters-filter length L and  the 
normalized adaptive proportionality constant Q. Increasing or -as- 
ing either of these parameten by a factor of two causes little change in 
adaptive performance. Examples of this behavior are presented in [ 11. 
Of cou~se, once the precise statistical description of an input waveform 

is available, optimal filters can be derived and will undoubtedly out- 
perform adaptive aters. A note of caution for this approach, however, 
must be injected. The performance  of optimal processors is not always 
robust. If a mistake is made in characterizing the  input and the wrong 
“optimal” processor is employed, the results can often be dramatically 
in error. As an example, if the specmun analysis method (SA) de- 
m i  in  the above correspondence is applied to  an input containing 
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two closely  spaced  sinusoids,  and a four-sample  analysis interval is used, 
the spectrum obtained after adding zeros to achieve the desired fre- 
quency resolution will not contain peaks at the appropriate instan- 
taneous frequency points. This is true even for the case of  infimite- 
input signal-tenoise ratio. Thus searching for maxima  in the output 
could  easily lead to frequency estimation errors greater than 50 per- 
cent for the tw-input  sinusoid case. In fact, a derivation of the multiple 
input optimal estimator shows that  it differs significantly from the 
direct SA method used by Tufts. In contrast, the same form of the 
adaptive frequency estimator works well for  either singlea several- 
input frequency-modulated sinusoids, as shown in [ 11. More recent 
results have also shown that the adaptive method provides  good  esti- 
mates for the case of burst-type inputs m which the sinusoids are 
present only during short random time intervals. 

In summary, I agree completely with Tufts’ observation that one 
should always apply all  available u priori information when designing 
detection and estimation signal processing filters. Care must be taken, 
however, to ensure that the performance of these filters does not 
rapidly deteriorate when small enors exist between the actual and as- 
sumed input statistics. For those cases which Seem to occur all too 
frequently in practice-that is, when one has absolutely no reliable 
u priori knowledge  regarding the structure of the desired signals-I 
know of no better overall procedure than to use a simple adaptive 
filter based on the LMS aigorithm. 
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Reply3  by B. Widrow,4 J. Glover,” J .  McCool,6 and J .  Treichler 

We thank Tufts  for his comments on the discussion  of adaptive line 
enhancing that appears in Appendix D of our paper “Adaptive Noise 
Cancelling:  Princkples and Applications” [ 11. It is clear to us that our 
suggestion  was in error that given equal input data, the line enhancer 
might outperform the DFT m detecting a single sine  wave in white 
Gaussian  noise. In this classic case, the DFT implements a finite- 
length approximation to the matched filter and is therefore close to 
optimal. We believe that ow simulations are correct, but  that our 
analysis and interpretation of the results are subject to question. It 
would  have been more meaningful to compare DDFT with d G  
rather than with DALE as we did in Appendix D. On the basis of this 
comparison, analysis shows that  the adaptive line enhancer and the 
DFT are equally effective as a single-sinewave detector. 

Tufts suggests that in restricting the length L of the DFT  window to 
less than the length of the  total data block, the DFT was in effect 
disadvantaged in ow study. This issue is not clear in Appendix D.  We 
should note here that the adaptive filter length was restricted in the 
same way, in that the number of  weights  was made equal to the number 
of DFT points, precluding any comparative advantage or disadvantage. 
Such length restrictions are useful  in the presence  of an input signal 
with finite bandwidth. For best results, the DFT length and the 
adaptive-fdter length should both be set to correspond to the reciprocal 
of the signal bandwidth, so that the frequency resolution of each 
method is matched to the signal linewidth. 

We regret the error in Appendix D and wish to point out  that this 
section is independent of the rest of the paper. We did caution the 
reader that “the concepts . . . have not been  in existence long enough to 
provide an adequate perspective.” 

Since the line enhancer is a new  and  unusual filtering system, it is 
sometimes a difficult or complex matter to resolve questions regarding 
its behavior with input signals of finite bandwidth, colored noise, 
multiple signals in noise, etc. People  who  have  observed the perfor- 
mance  of the line enhancer are very enthusiastic about  its potential and 
are anxious to understand its behavior from a theoretical standpoint. 
Experiments are  easy to perform but are sometimes difficult to inter- 
pret. In the following experiments, adaptive-fatering and  adaptive- 
lineenhancing techniques have  been  applied to some interesting prob- 

‘B. Widrow and J. Treichler  are with the Department of Electrical 
’Manuscript  received June 1, 1976. 

J .  Glover is with the Department of Electrical Engineering,  Univer- 
J .  McCool is with the Fleet  Engineering Department, Naval Under- 

Engineering, Stanford University, Stanford, CA 94305. 

sity of Houston, Houston, TX. 
sea Center, San Diego, CA 921 32. 

lems in spectral analysis. The same kinds of problems can as0 be 
solved by conventional methods based on the DFT. 

The experiments presented in  Fig. 1 are similar to the experiments 
d e s c r i i  in Appendix D of [ 11 with the following exception: in  the 
experiments presented here, we use the transfer function magnitude of 
the lineenhancer adaptive filter, rather than magnitude squared as we 
did in Appendix  D, for comparison with the power density spectrum of 
the primary input, consisting of a sinewave signal in noise. For the 
experiment depicted in Fig. l(a), the noise  was white; for Fig. 1@) and 
(c), the noise  was 50-percent white, SO-percent colored. The colored 
noise had 25-percent bandwidth and was generated by  passing white 
noise through a twoconjugatepole filter. In each case, the SNR was 
0.01562. The adaptive filter had 128 weights; the DFT had 128 points. 
The  sampling frequency was 1. The total amount of data used  was 
32 768 samples in each case. 

The DFT takes in blocks and uniformly weights the samples,  whereas 
the line enhancer works on a steady-flow  basis  and exponentially 
weights the  data over time. In comparing the “data consumption” of 
the two techniques, the  data used  by the line enhancer were defmed as 
the number of  samples inputted duing four time constants of the 
adaptive process. 

Inspection of the plots of  Fig. 1, all drawn to the same linear scale, 
shows that in each case, using either the DFT or the line enhancer, the 
amplitudes of the signal components present (the spikes)  were approxi- 
mately the same and the background noise  levels  were similar. In one 
case, however, where the signal frequency was close to the peak of the 
colored-noise component (Fig. l(c)), the noise output of the line 
enhancer was about 3 dB higher than that of the DFT power spectrum. 
The line enhancer in each case was implemented with its delay set at 
256 samples, which was adequate to decorrelate and eliminate the 
colored-noise components. 

Fig. 2 illustrates a different kind of experiment, where a large- 
amplitude signal summed with small-amplitude signals in noise causes 
difficulties in detecting and/or resolving the small siguals. 

Fig. 2(a) shows the formation of “input A” as the sum of white 
noise of unit power with three s i n u s o i d a l  s i g n a l s :  the fiRt of power 
equal to 125 at frequency fi = 0.1796875, the second  of  power  0.125 
at frequency f2 = 0.15625, and the third of  power  0.5 at frequency 
f3 = 0.421875. The sampling frequency is 1. Notice that signal 1 was 
one thousand times more powerful than signal 2, and that they both 
were  close in frequency. Fig. 2@) is a block  diagram  of the system 
used in this experiment, its primary input indicated by A .  Its outputs 
are B and C, which represent, respectively, the ‘‘error”  of the adaptive 
process and the adaptive-filter output. An additional output is the 
weight vector of the adaptive fdter, comprising its impulse response, 
which  can be Fourier transformed to provide a transfer function as 
discussed  above. 

Fig. 2(c) is a linear plot of the DFT  power spectrum of input A .  The 
frequencies of the three signals are indicated by the arrows. Notice 
that signal 2 is not resolvable; it is buried in the second  sidelobe  of 
signal 1. Even  when this spectrum is taken through a Hanning  window 
and plotted on a log scale, signal 3 is visible but smaller in amplitude 
than many of the sidelobes of signal 1, and  signal 2 is undetectable. 

When the DFT spectrum of the error B is taken instead, a power 
spectrum is obtained that clearly  shows the weak  signal at frequency 
fz. This spectrum, plotted on a linear scale in Fig. 2(d), also shows the 
weak  signal at frequency f 3  and the broad-band background noise. The 
strong s i g n a l  1 was totally cancelled as a result of the adaptive process. 

The plots of  Figs. 2(c) and 2(d) were  normalized so that full scale 
corresponds to the largest amplitude point of  each plot. The spectra 
of both A and B were taken from 128 data points. There was no 
ensemble  averaging. 

The 64 -weight adaptive filter cancelled the strong signal within about 
fwe  cycles of frequency fi, i.e., within about 30 sample  periods.  The 
CFT spectrum of error B was then taken so that the  amount of data 
used in forming it was only  slightly greater than the quantity of data 
used  in forming the DFT spectrum of inputd. The  line enhancer used 
as a strong line  canceller appears to have  improved the capability of 
the DFT to resolve  and detect weak signals when they are close  in 
frequency to a strong interference. Although  an equivalent result 
could have been obtained by the DFT alone using a wider  window, 
it probably would require substantially more data. 

The line enhancer can  be  used as an alternative to the DFT as a 
detector and estimator of  weak  signals in noise. It also provides use- 
ful output signals and can function as a self-tuning filter, to tune in 
some and tune out other signals automatically. It is a very  promising 
methodology for spectral analysis and is related to the maximum 
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entropy technique [2] ,  [3] .  Since the line enhancer is entirely differ- 
ent in structure from the DFT, it may  be more easily implemented in 
some  cases. We hope to publish a comprehensive work on adaptive 
spectral analysis in the future, contingent on more extensive under- 
standing of the behavior  of the line enhancer with inputs of the types 
described  above. 
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Realization of a Discrete Fourier Transform (DFT) Module 
for Incorporation m F R  Rocessors 

A. POMERLEAU, M. FOURNIER, AND H. L. BUIJS 

Absrmet-For applications requiring and in-place treat- 
ment, it is often advmtageoun to realize Specinlpurpoee computers. 
This paper describes a discrete Fourier trnnstarm @IT) module for 
iacorporation in fast Fourier trmsform 0 p- The module 
is highly suitable for red input applicztions requiring high+ m- 
formatba It   awbutes one point to all fnquency channels in one 
clock cycle. 'Ibis treatment is not only well suited for the present tech- 
nology, but appeas to be more attractiveinviewofrecenttrendsin 
digital circuitry. 

I. FORMULATION 
In the evaluation of a N point discrete Fourier transform for high- 

speed applications with FFT algorithms where N = r”,  each of the n 
passes  may be computed in a manner such that each input is processed 
sequentially and its contriiution is amibuted to  all frequency channels 
in one clock cycle [ 11. 

In  such a case, the basic equation to evaluate each r point transform 
without recourse to the FFT algorithm is 

F ( j ) = - x  f(k)exp-2ni-, j = O , l , . - . , r - l .  
1 r -1  

k=o 
ki 
r 

In this expression, f(k) is the  input function and F ( j )  are the Fourier 
transform coefficients For the general case, the evaluation of F ( j )  re- 
quires r2  complex operations’ to uniquely determine the spectrum. 
For a serialinput parallel-output circuit, it would then require r com- 
plex multipliers and r complex adders.  However, this number can be 
greatly reduced when r is a multiple of 4, since there are only (r - 4)/4 
different absolute values of the real  and imaginary parts of the r roots 
of 1, neglecting 0 and 1. Furthermore, when the input function is real 
and only the nonredondant terms are evaluated, an additional reduction 
in the number of mathematical operations is possiile. The implementa- 
tion of a module in which the data are treated in magnitude, while the 
sign and that of the trigonometric coeffkients are taken into account in 
the adders, then requires the following. 

1) r real adders with their associate  memories. 
2) (r - 4)/4 multipliers operating in parallel on real numbers. This 

quantity is required since there are only (r - 4)/4 absolute different 
values in the r roots of 1, neglecting 0 and 1, if r is a multiple of 4. 

3) A relatively  small quantity of multiplexers, since some  of the 
adders have  always  access to  the same  weighted  values. 

4) Control units having three main functions: 
a) to direct the weighted data toward the proper accumulator; 
b) to add  or subtract the weighted data; 
c) to apply the  inhiiit function (multiplication by zero). 

Tabb I shows the number of adders, multipliers, and multiplexers for 
different values  of r .  
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multiplication followed by a complex addition. 

TABLE I 
NUMBER OF COMPONENTS REOUIRED FOR r-POINT TRANSFORM 

I accumulators 
I 

4 4 

8 8 

12  12 

16  16 

20 20 

24 24 

I 
r r 

I 

mu1 ti p l  iers 
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mu1 t i p l e x e r s  
quant-f inpu ts  
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2 
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Fig. 1. Eight-point Fourier transform module. 

11. REALIZATION 
Figure 1 shows the realization of an I-point Fourier transform. It is a 

serial-input parallel-output circuit where all the bits forming a word are 
propagated in parallel. 

A. Coding 
In each module, the input data words are represented by B bits ex- 

pressed in magnitude and sign. The multiplications are done in magni- 
tude only  and the adders operate in 2’s complement code. Therefore, 
a code conversion circuit is not required between the multiplier and the 
accumulators. 

B. Multipliers 
As shown in Table I, it requires only one multiplier for a radix 8 

Fourier transform. Here the data are represented by E bits, while the 


